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A B S T R A C T   

Hyperspectral sensor adaptability in precision agriculture to digital images is still at its nascent stage. Hyper-
spectral imaging (HSI) is data rich in solving agricultural problems like disease detection, weed detection, stress 
detection, crop monitoring, nutrient application, soil mineralogy, yield estimation, and sorting applications. 
With modern precision agriculture, the challenge now is to bring these applications to the field for real-time 
solutions, where machines are enabled to conduct analyses without expert supervision and communicate the 
results to users for better management of farmlands; a necessary step to gain complete autonomy in agricultural 
farmlands. Significant advancements in HSI technology for precision agriculture are required to fully realize its 
potential. As a wide-ranging collection of the status of HSI and analysis in precision agriculture is lacking, this 
review endeavors to provide a comprehensive overview of the recent advancements and trends of HSI in pre-
cision agriculture for real-time applications. In this study, a systematic review of 163 scientific articles published 
over the past twenty years (2003–2023) was conducted. Of these, 97 were selected for further analysis based on 
their relevance to the topic at hand. Topics include conventional data preprocessing techniques, hyperspectral 
data acquisition, data compression methods, and segmentation methods. The hardware implementation of field- 
programmable gate arrays (FPGAs) and graphics processing units (GPUs) for high-speed data processing and 
application of machine learning and deep learning technologies were explored. This review highlights the po-
tential of HSI as a powerful tool for precision agriculture, particularly in real-time applications, discusses limi-
tations, and provides insights into future research directions.   

1. Introduction 

Hyperspectral imaging (HSI) has emerged as a promising tool for 
precision agriculture (PA). Unlike common imaging techniques that use 
the visible spectrum (RGB) or multispectral data. HSI provides a more 
detailed and comprehensive view of crop health, allowing for more 
targeted and precise crop management decisions. By analyzing the 
unique spectral signature of crops, HSI can detect plant stress, disease, 
and nutrient deficiencies, providing valuable information that can be 
used to optimize crop yield and reduce input costs (Mishra et al., 2020). 
HSI utilizes the inherent property of materials to absorb a particular 
wavelength of light while reflecting or scattering other wavelengths. 
Interaction of objects with the electromagnetic spectrum is a universal 
phenomenon (Mishra et al., 2017b). HSI, therefore, provides a non- 
invasive method to detect molecular reflections and absorptions with 

the help of a wide range of wavelengths in the visible near-infrared 
(VNIR) and shortwave infrared (SWIR) regions of 400–2500 nm 
(Wieme et al., 2022). Understanding the patterns in molecular absorp-
tion and reflection and associating them with molecules present in the 
material (also known as study of spectroscopy) has been the focus of 
most research in the agricultural domain (Pavia et al., 2014). 

HSI was predominantly used with orbital and suborbital platforms. 
Portable handheld variants of these sensors are now available and 
actively being used in fields of engineering, medical science research, 
and industrial production lines (Anastasiou et al., 2018; Picon et al., 
2012; Tatzer et al., 2005). In the past twenty years, the number of peer- 
reviewed studies that use handheld variants of hyperspectral sensors are 
increasing, and more studies are building custom data collection plat-
forms and analysis workflows (Fig. 1). This trend indicates a positive 
shift from geospatial applications to in-field applications, where data 
collection is conducted by users and automated analysis pipelines are 
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created for more real-time or near real-time applications. 
Hyperspectral sensors, though constantly improving in the last many 

decades, still lack the ubiquitous feasibility to be applied in real-time 
applications as compared to the application of RGB cameras. Real- 
time application is defined as the collection of data and analysis as the 
data comes in, without the need for constant supervision of subject 
specialists (Merfield, 2016). It is a more machine-directed way of col-
lecting and analyzing data. The impracticality of utilizing hyperspectral 
data stems from its high-dimensional data size, high cost and labor 
associated with data acquisition in comparison to digital images, and 
limited adaptation in the research community. For this reason, analysis 
of hyperspectral data is mostly done in research laboratories after 
exhaustive data processing and under the supervision of subject spe-
cialists. To overcome challenges in real-time applications of hyper-
spectral sensors, lessons learned in initial testing for various field 
applications, and further research are necessary. The focus also needs to 
be shifted towards technical methods that can bridge the gap created by 
handling high-dimensional hyperspectral data. Recent studies conduct-
ed in the review of HSI applications in agriculture have taken a broader 
perspective by including satellite, airborne sensors, UAV, and ground- 
based hyperspectral sensors (Lu et al., 2020), and focus more towards 
the working principles of HSI and their application in specific subject 
areas without inquiring about the technological advancements neces-
sary. Table 1 shows the focus area of recent review studies conducted on 

Nomenclature 

1D CNN 1-dimensional convolutional neural network 
3D CNN 3-dimensional convolutional neural network 
AE-NN autoencoder neural network 
AI artificial intelligence 
AISA airborne imaging spectrometer for applications 
API application programming interface 
ARM advanced RISC machine 
AVIRIS airborne visible/infrared imaging spectrometer 
BIL band interleaved-by-line 
BIP band-interleaved-by-pixel 
BPNN back propagation neural network 
BSQ band-sequential 
CBD canonical Bayesian discriminant 
CCD charge coupled diode 
CDA canonical discriminant analysis 
CNN convolutional neural network 
CPU central processing unit 
CUDA compute unified device architecture 
DA discriminant analysis 
DCNN deep convolutional neural network 
DL deep learning 
DR dimensionality reduction 
DSP digital signal processing 
FCN fully connected network 
FLDA fisher’s linear discriminant analysis 
FPGA field programmable gate array 
GBRT gradient boosting regression tree algorithm 
GPU graphical processing unit 
GTB gradient tree boosting 
HS-ANN hybrid segmentation – artificial neural network 
HSI hyperspectral imaging 
IR infrared 
KMNF kernel minimum noise fraction 
KNN k-nearest neighbors 
KPCA kernel principal component analysis 
LED light emitting diode 

LM multi-variable linear regression 
LPDBL locally preserving discriminative broad learning 
MCARI modified chlorophyll absorption in reflectance index 
ML machine learning 
ML/BSBC maximum likelihood best spectral band combination 
MLC maximum likelihood classifier 
MOG mixtures of gaussians 
MOG mixture of gaussians 
MSVM multiclass support vector machines 
NDVI normalized difference vegetative index 
NIR near infrared 
NN neural networks 
PA precision agriculture 
PCA principal component analysis 
PLB potato late blight 
PLS-DA partial least square discriminant analysis 
PLSR partial least square regression 
PRISMA preferred reporting items for systematic reviews and meta- 

analyses 
RBF gaussian radial basis function kernel 
RF random forest 
RFE recursive feature elimination 
RGB red, green, and blue bands 
ROI region of interest 
SAM spectral angle mapper 
SDA stepwise discriminant analysis 
SLOG simple logistic 
SMO sequential minimal optimization 
SOM self-organizing maps 
SPCA standardized principal component analysis 
SVM support vector machine 
SWIR short wave infrared 
TPE tree-structured parzen estimator 
UAV unmanned aerial vehicle 
UGV unmanned ground vehicle 
VCA vertex component analysis 
VNIR visible near infrared  

Fig. 1. Research trend in peer-reviewed publications showing the increasing 
trend of research with handheld hyperspectral sensors and custom platforms for 
hyperspectral data capture or analysis. 
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the application of HSI in agriculture. These studies shared overarching 
goals with this review; however, our study is unique in the sense it fo-
cuses on the requirements for real-time applications of ground-based 
hyperspectral sensors and introduces necessary tools. Therefore, this 
study aims to concentrate only on ground-based, UAV, and aircraft- 
mounted hyperspectral sensors that have high spatial resolution. The 
reason to focus on just these sensors is that they provide more freedom 
for in-field integration with UAVs, UGVs, and platform ecosystems 
comprising multiple sensors while allowing high temporal resolution 
data recording. With the above goals, the objectives of this review study 
are: 

Review literature from the past 20 years (2003–2023) that used 
portable hyperspectral sensors (ground-based, UAV, portable hand-
held, and spectroradiometers) for applications in agricultural 
farmlands. 
Clearly define the necessary resources that are needed for the real- 
time application of hyperspectral sensors. 
Review the trends, explore the applicability, observe the real-time 
application of HSI, and suggest future research directions for suc-
cessful implementation of HSI for real-time application in PA. 

2. Methodology of literature selection for the review 

A systematic review of published literature was conducted to address 
the real-time applications of hyperspectral sensors. Systematic review 
guidelines published under the Preferred Reporting Items for Systematic 
reviews and Meta-Analyses (PRISMA) were followed for the selection of 
literature (Page et al., 2021). 

2.1. Eligibility criteria 

For the review, literatures published in 2003–2023 was selected. 
Studies that use portable and/or high spatial resolution hyperspectral 
sensors were included. To facilitate a natural understanding of the topic, 
three main categories in hyperspectral data analysis that need to be 
addressed for real-time applications were identified. These were data 
collection, data processing, and applications. A flowchart of these cat-
egories with their sub-categories is shown in Fig. 2. 

2.2. Search strategy and information sources 

Four databases were used to search for literature. These were Web of 
Science, Scopus, Science Direct, and Google Scholar. Boolean operators 
(‘AND’ and ‘OR’) were utilized with search terms to narrow down the 
search results (Table 2). The search term “hyperspectral” gave multiple 
results that included work based on satellite hyperspectral, which was 
out of the scope of the study. To focus on proximal hyperspectral sensor 
literature, sensor manufacturer names generally found in literature 
along with special keywords were used. A complete list and search terms 
properly categorized can be found in Table 2. These search terms were 
used interdependently across categories. 

2.3. Selection processes 

Primary focus was on studies that use proximal hyperspectral sensors 
for agricultural applications. Studies that use ML or DL technologies 
along with technical novelty that improves either data analysis pipe-
lines, or achieves real-time application of hyperspectral sensors, and 
studies that fabricate platforms that facilitate data collection or analysis 
were included. Automation tools found in the database search engine 
were used to narrow down the search results. Only literature published 
in the English language was included. Conference papers and literature 
published in different study domains were preferentially removed. 
Finally, 97 research articles were used for this systematic review. The 
complete literature screening process is displayed in Fig. 3. 

Table 1 
An overview of significant hyperspectral imaging reviews conducted in the 
agricultural engineering domain in recent years.  

Reference Key aspects 

Sanaeifar et al. 
(2023)  

• Study of large-scale remote sensing models and proximal 
hyperspectral models. 

Applications of proximal hyperspectral in determining 
abiotic plant stress at leaf and canopy scale. 

Barbedo (2023)  • Overview of working with hyperspectral data in each step 
of deep learning (DL) model development. 

DL applications in proximal HSI of vegetable 
production. 

Eh Teet and Hashim 
(2023)  

• Advantages and disadvantages of HSI for disease detection 
in fruits and vegetables.  

• Compares computer vision, multispectral, hyperspectral, 
biospeckle and thermal imaging.  

• Concludes suggesting the need for more standardization in 
data analysis procedures. 

Ma et al. (2023)  • Efficiency of various spectroscopic sensors including HSI in 
the quality assessment of legumes.  

• Discusses computer vision and spectroscopic techniques. 
Wieme et al. (2022)  • Quality assessment of fruit, vegetables, and mushrooms 

using HSI.  
• Machine learning (ML) and DL applications for assessment. 

Khan et al. (2022)  • Implementation of Hyperion, Landsat-8, and Sentinel 2 
satellite hyperspectral data in agriculture.  

• ML and DL methodologies are used in agriculture. 
Berger et al. (2022)  • Reviewed early, medium, and chronic stages of plant 

stresses.  
• It concludes that NIR is one of the major tools used for 

plant stress detection. 
Passos and Mishra 

(2022)  
• Overview of DL parameters for spectral data.  
• Tutorial for hyperparameters tuning of DL models. 

Wang et al. (2021)  • DL applications in HSI of plants.  
• DL models used with HSI.  
• Hyperspectral image analysis using DL models. 

Lu et al. (2020)  • Application of satellite, aircraft, UAV, and proximal 
hyperspectral sensors in agriculture.  

• Data processing and analysis of data collected from various 
sensor types. 

Mishra et al. (2020)  • Hyperspectral data collection of whole plants.  
• Illumination variations and correction approaches. 

Benelli et al. (2020)  • Review of applications of ground-based HSI in precision 
agriculture for phenotyping, fruit ripening, chlorophyll, 
and Nitrogen content, drought stress, disease, and fungal 
detection. 

Maes and Steppe 
(2019)  

• Applications of hyperspectral sensors with UAVs.  
• Fusion of hyperspectral and thermal data for pathogen 

detection.  
• Comparison of RGB, multispectral, hyperspectral, and 

thermal for precision agriculture application. 
Ali et al. (2019)  • Review of plant disease detection using different sensors.  

• Accuracy of proximal and remotely sensed HSI in disease 
detection. 

Corti et al. (2018)  • Review of maize parameters influenced by N management 
using remote and proximal sensing.  

• The focus was on regression and vegetative indices 
analysis. 

Tao et al. (2018)  • Use of fluorescence and near-infrared spectroscopy in real- 
time detection of fungal contamination in agricultural 
products.  

• Concluded that while near-infrared spectroscopy and HSI 
provide reliable results. High-dimensional data is a 
bottleneck problem for real-time sorting applications. 

Mishra et al., 
(2017b)  

• Application of proximal HSI in plants.  
• Overview of light interaction, instrument setup and 

spectral data analysis. 
He and Sun (2015)  • Real-time detection of microbial contamination in 

agricultural and food products using HSI.  
• Suggests multispectral over hyperspectral after real-time 

applications.  
• The need for standardization of hyperspectral data analysis 

is suggested as a future trend.  
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3. Hyperspectral data collection 

Data acquisition is an essential aspect of HSI, as there are several 
modes of data acquisition. These modes not only affect the various data 
resolutions but also determine their applicability in real-time scenarios. 

3.1. Data collection modes 

Data collection modes include line scan, point scan, wavelength 
scan, and snapshot scanning acquisition modes (Fig. 4). Each of these 
modes has its own advantages and disadvantages for real-time appli-
cations, data collection, analysis, and management (Adão et al., 2017). 

Point scanning sensors (Fig. 4a) collect data at discrete points, 
providing very high spectral resolution albeit with no spatial informa-
tion, since direct contact or proximity to the subject is required (Omidi 
et al., 2022; Qin, 2010). Line scan sensors (Fig. 4b), acquire data in a 
push-broom pattern and require a translation stage to capture the 
complete image. These sensors are commonly used for large-scale 
mapping, offering high data coverage, and low data redundancies 
(Fowler, 2014). As a result, the data size from point scan sensors is 
smaller compared to that of line scan sensors. Wavelength scan sensors 
(Fig. 4c) require a variable filter or spectrometer that distributes certain 
wavelengths. These filters are generally mounted on charge-coupled 
diode (CCD) sensors which are light-sensitive integrated circuits and 
significantly reduce the cost of hyperspectral data acquisition (Eddy 
et al., 2008). But their spectral dimension is limited to the specifications 
of the filters. Snapshot sensors (Fig. 4d) acquire data simultaneously 

over the entire scene, offer high spatial, and spectral resolution, but 
require large amounts of data storage (Wong, 2009). Efficient data 
management is a crucial aspect of hyperspectral data acquisition, as the 
collected data can be quite large (Mishra et al., 2017b). The choice of 
data acquisition mode can impact the amount of data generated and the 
type of analysis that can be performed (Nie et al., 2023). 

Line scan sensors are known to record distorted images once vibra-
tions are introduced in the sensor or the object while data capture is in 
process, especially when using line scan sensors mounted on UAVs 
(Horstrand et al., 2019a). A comparative study of line scan and snapshot 
sensors mounted on UAVs done by Sousa et al. (2022) suggests that line 
scan sensors performed better as compared to the snapshot in terms of 
processing time, complexity, flight planning, and the ability to capture a 
whole spectral resolution at once. Line scan limitations include spatial 
distortions and a difficult orthorectification process. Recording more 
than a hundred wavelengths of spectral data can reduce the speed of 
data collection. Snapshot, line scan, and wavelength scan sensors can be 

Fig. 2. Flowchart illustrating the outline of the systematic literature review study.  

Table 2 
Overview of different search criteria used to search for literature in Web of 
Science, Scopus, Science Direct, and Google Scholar.  

Category Search terms* 

Study area “agriculture” OR “precision agriculture” OR “smart agriculture” 
Data 

collection 
“specim” OR “headwall” OR “cubert” OR “resonon” OR “inno-spec” 
OR “hyspex” OR “ground hyperspectral” OR “infield 
hyperspectral” OR “proximal hyperspectral” OR “close range 
hyperspectral” 

Data 
processing 

“dimensionality reduction” OR “feature selection” OR 
“segmentation” 
“real-time” OR “in field” OR “automatic” OR “autonomous” 
“gpu” OR “graphical processing unit” OR “nvidia” OR “fpga” 

Applications “weed identification” OR “weed classification” OR “crop 
monitoring” OR “disease detection” OR “pest detection” OR 
“nutrient management” OR “biomass” OR “leaf area” OR 
“chlorophyll” OR “nitrogen” OR “stress” 

*These search terms were used interdependently. For example, data collection 
terms with data processing terms, or data collection terms with applications 
terms. 

Fig. 3. Literature screening process according to PRISMA guidelines (Hadd-
away et al., 2022). 
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used to utilize the spatial information along with the spectral informa-
tion. Whereas point scan sensors mostly find their use in studies that 
utilize spectral information for biochemical analysis (see Fig. 5). 

3.2. Hyperspectral platforms 

Platforms that can support hyperspectral sensors for data collection 
and application in agricultural farmlands can help in the implementa-
tion of these sensors for various agriculture tasks. Essential parts of these 
platforms include a translation stage (in case of a line scan sensor), 
artificial light source to reduce variability, data recording computer, 
software to manage the data capture, data management, and platform 
mobility in the field (Mishra et al., 2020). Data collection platforms 
using line scan sensors face the problem of image distortion generated 
due to wind, while actively scanning. To limit these distortion effects, it 
is beneficial to collect data at no wind conditions or obstruct the flow of 
wind by completely covering the scanning area. Open structure plat-
forms using line scan sensors are therefore limited by weather conditions 
(Eddy et al., 2008). 

There are limited studies with hyperspectral platforms that can re-
cord data and analyze it simultaneously. Most of these studies are done 
in controlled environments and in closed system platforms. These sys-
tems help control the environment variability and commonly utilize a 
forward-feed technique. In which, the data is collected, stored in the 
computer, and models are deployed after training. As in the case of 
Mishra et al. (2022b), their all-in-one CPU based system facilitates data 
collection, has arrangements to set the field of view of the sensor and 
allows deployment of trained model for analysis with different data. 
Hyperspectral sensors that capture fewer bands instead of the usual 
hundreds of bands have been successfully used for real-time actuation 
tasks. Reduced data size combined with DL can achieve processing 
speeds of up to 0.04 s/image followed by sorting with a robotic arm 
(Chen et al., 2022). Working with limited bands has enabled micro 
dosing of weeds by using Bayesian classifiers with the help of platform 
mounted on tractor at a considerable ground speed of 0.04 m/s (Zhang 
et al., 2012b). Deploying hyperspectral sensors that can record 224 
bands on a UAV has its own technical difficulties. Using embedded 
systems having multiple graphical processing units (GPUs) like the 
NVIDIA Jetson TX2 has facilitated hyperspectral data recording while 
wirelessly connected via a remote controller (Horstrand et al., 2019b). 
With these implementations, we are noticing a shift in hyperspectral 
applications in more complex environments. 

The present state of hyperspectral studies utilizing platforms can be 
broadly classified as, (1) Data collection platforms: this is the basis of all 
platform designs and support mounting of sensor, and shutter triggers, 
with arrangements to block the external sunlight in case of ground-based 
systems. UAV-mounted sensors have been seen to utilize push-broom 

and snapshot sensors and collect data in solar radiance. The choice of 
hyperspectral mode of collection is highly dominated by push-broom 
sensors in ground platforms. No spectral data processing is conducted 
while data is recorded in both cases. (2) Actuation tasks platforms: these 
collect data and perform real-time tasks that include spraying, robotic 
arm manipulation, and real-time classification. While both push-broom 
and snapshot modes of data collection are used, hyperspectral data 
collected is highly reduced before actuation tasks with real-time speeds 
are performed. Real-time actuation platforms are currently limited to 
indoor-based systems only. Closed system hyperspectral data capture 
assures hassle-free data capture while also improving the ability for high 
temporal data collection. 

3.2.1. Illumination requirements of platforms 
HSI is a technique that records the interaction between light and an 

object across a broad range of the electromagnetic spectrum. The light- 
object interaction is dependent on the radiance energy of the incident 
light. It is observed that light absorbed in the visible range influences a 
molecule’s electronic state. Interaction of light with molecules in the 
NIR and IR ranges introduces molecular vibrations which are beneficial 
to understand the physiochemical properties of plants (Edelman et al., 
2012). Several illumination sources are available for HSI, including 
Halogen (Incandescent), Fluorescent, Light Emitting Diodes (LEDs), and 
Solar (Zahavi et al., 2019.). Hyperspectral Fluorescence Imaging utilizes 
fluorescent illumination that is in the range of 315–400 nm. Due to the 
small range of <100 nm, implementation of fluorescence imaging in 
agriculture is very limited (Kim et al., 2001). LED illumination is in the 
range of 380–700 nm. LED illumination provides a benefit of low 
working temperatures, low energy requirement compared to largely 
accepted Halogen illumination, and has been successfully used in seeds 
viability evaluation (Mo et al., 2014). It does not record interactions in 
the third overtone region that exist after 700 nm (Osborne, 1993). In the 
agricultural domain, halogen and solar illumination are used as 
preferred illumination sources (Table 3). Halogens have the advantage 
of being similar to solar illumination in terms of their continuous illu-
mination range of 400–2500 nm. Hyperspectral platforms that use solar 
irradiance for data collection are often limited by the choice of vehicle, 
such as all UAVs use solar irradiance, and weather conditions, as windy 
conditions introduce distortions in image due to movement of plants 
while scanning using line scan sensors, and cloudy conditions. These 
platforms often record data at noon when solar radiance is at its highest 
(Eddy et al., 2008). Hyperspectral platforms that use halogen illumi-
nation reduce environmental variability and in almost all cases have an 
enclosure that helps negate the effects of wind on line-scan sensors. 

3.2.2. Software for hyperspectral data acquisition and analysis 
Hyperspectral data acquisition and analysis is predominantly 

Fig. 4. Different modes of hyperspectral data collection. (a) Point scan, (b) line scan, (c) wavelength scan, and (d) snapshot scan.  
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performed using software supplied by the sensor manufacturer. 
Research utilizing proprietary software is constrained to offline opera-
tion, with data analysis being conducted separately, after the completion 
of data collection. The collected data is then processed through specific 
analysis pipelines, which may contain discontinuities and lack 

streamlining. The primary objective of real-time analysis is to eliminate 
these discontinuities. Support for data acquisition without commercial 
software is highly desirable but still lacking. Important tools for the 
development of these systems would be the availability of Application 
Programming Protocols (APIs), Software Development Kits (SDKs), and 

Fig. 5. Examples of hyperspectral platforms for field applications. (a) Autonomous Platform Information System (API) (Eddy et al., 2008); (b) Data collection with a 
person holding a cardboard background (Williams et al., 2017); (c) Two spectrometers fused to make a portable spectrometer running on Raspberry pi 3 for data 
collection (point scan method) (Omidi et al., 2022); (d and i) Platform for weed control with micro dosing capabilities, tested in field (d) and lab (i) conditions (Zhang 
et al., 2012a); (e and f) artificially illuminated systems for data collection Hypercart; (e) and imaging box; (f) (Polder et al., 2019; Van De Vijver et al., 2020), 
Examples of hyperspectral platforms for lab applications; (g) All-in-one spectral imaging (ASI) for data collection and model deployment (Mishra et al., 2022b); (h) 
Coffee bean defect inspection system with a robotic arm for sorting (Chen et al., 2022), Examples of hyperspectral platforms for aerial applications; (j) Data 
acquisition and recording powered with NVIDIA Jetson TK1 mounted on DJI Matrix M600 using Specim FX10 designed for ground applications (Horstrand and 
Guerra, 2019a); (k) DJI M600 mounted with UAV specific sensor with inbuilt data recording capability (Sousa et al., 2022); and (l) DJI S1000 with a Rededge 
multispectral sensor (Su et al., 2022). 
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sensor compatibility with interfaces like GigE, USB 3.0, and PCIe. Pleora 
eBUS SDK has enabled GigE version sensors to communicate with ARM- 
based systems that have enabled the mounting of hyperspectral sensor 
on UAVs with data transfer compatibility (Horstrand et al., 2019a). 
Open-source language, e.g., Python has community developed libraries 
like Plant CV and Spectral Python (SPy) for hyperspectral data analysis 
(Fahlgren et al., 2015). Commercial software like MATLAB has support 
for toolboxes like HYPER-Tools available from its author’s website, for 
analysis of hyperspectral data including segmentation, preprocessing, 
and classification (Mobaraki and Amigo, 2018). Another approach has 
been to use monochrome sensors with variable filters. The use of CCD 
sensors like Sony ICX414AL and Photometrics CoolSNAPcf sensor 
coupled with a linear variable filter or spectrograph (ImSpector V8) has 
enabled line scan data collection in various spectral ranges. The use of 
CCD sensors not made specifically for hyperspectral data collection has 
resulted in reducing the data collection cost and development of auto-
mated pipelines by allowing the collection of hyperspectral data with 
the same digital image pipelines (Eddy et al., 2008; Zhang et al., 2012a). 

4. Data processing and analysis of hyperspectral data 

While hyperspectral images are distinguished because of their multi- 

dimensional data, it is also accursed by it, as Bellman (1957) opined 
“this multidimensional data is burdened with the curse of dimension-
ality,” which means that the data is laden with noise and has impractical 
data size. The noise in data can be generated due to the sensor’s cali-
bration, atmospheric effects, scattering of light, and plants geometric 
parameters. Therefore, pre-processing of hyperspectral data becomes 
crucial before any useful information can be extracted. The shift from 
satellite to proximal sensors has also seen a shift in the way data is 
preprocessed. Satellite hyperspectral data was predominantly pre-
processed for atmospheric corrections and orthorectification. On the 
other hand, the raw spectral data from a proximal sensor is affected by 
scattering effects due to plants geometry (Mishra et al., 2020). Scattering 
introduces non-linearities in the data also known as multiplicative scale 
effects and commonly referred to as “scatter effects.” Some of these 
preprocessing methods include normalization, multiplicative scatter 
correction, and Savitzky Golay filtering (Isaksson and Næs, 1988; 
Rinnan et al., 2009; Savitzky and Golay, 1964). 

Preprocessing techniques can reduce the complexity of high- 
dimensional data, but they themselves do not meet the requirements 
of real-time applications. To achieve real-time processing, it is necessary 
to review and improve the use of data compression, on-board process-
ing, and GPU processing in the analysis of hyperspectral data. 

Table 3 
List of various hyperspectral platforms employed in agricultural applications.  

Sensor Vehicle Application Speed Data 
recording 

Range Bands Spatial 
resolution 

Sensor 
type 

Reference 

Sony, ICX414AL with 
Linear Variable 
Filter 

Tractor boom 
mounteds 

FDC − Computer 400–1000 
nm 

61 640 × 480 px Line Scan Eddy et al. (2008) 

ImSpector V8 Lab-Field systemh Micro dosing of 
weeds in real-time 

0.04 m/s Computer 384–810 nm 71 Rms spot 
radius < 30 
μm 

Line Scan Zhang et al., 
(2012a); Zhang 
et al., (2012b) 

Hamamatsu S9227- 
03 CMOS 

Motorised 
Quadbike 

Plant-Ground 
Discrimination 

0.83 m/s Computer 648–785 nm 3 6.4 mm Line Scan Symonds et al. 
(2015) 

ImSpector N25E Closed Lab 
Systemh 

LDC − Computer 1000–2500 
nm 

288 rms spot 
radius < 15 
μm 

Line Scan Wei et al. (2015) 

HySpex VNIR 
1600–160 

Tractor mounteds FDC − Computer 400–1000 
nm 

160 0.5 mm Line Scan Vigneau et al. 
(2011) 

Inspector V9 UGVs FDC 0.09 m/s Computer 435–834 nm 200 4.8 × 6.4 mm Line Scan Pantazi et al. 
(2016) 

Hyperspec Inspector 
VNIR 

Fixed Site Gantryh HTTP 46–80 
plots/hr 

Computer 400–1700 
nm 

923 1600 px Line Scan Virlet et al. (2017) 

Hyperspec Inspector 
ExVNIR 

229 320 px 

VNIR Gilden 
Photonics 

Tractor Mounteds FDC 2.7 m/s Computer 400–896 nm 178 402 px Line Scan Williams et al. 
(2017) 

SWIR Specim 895–2506 
nm 

278 378 px Line Scan 

Specim FX10 DJI M600s FDC 18 m/s On board 400–1000 
nm 

224 1024 px Line Scan Horstrand et al., 
2019b 

Specim FX10 Tractor Mountedh FDC 0.08 m/s Computer 400–1000 
nm 

224 1024 px Line Scan Polder et al. (2019) 

Imspector V9 Mobile Frameh FDC − Computer 430–900 nm 200 0.30 mm/ 
pixel 

Line Scan Van De Vijver et al. 
(2020) 

ImSpector V10E-PS Electric Forklifts 

(Gantry like 
setup) 

FDC − Computer 360–1025 
nm 

520 Rms spot 
radius < 9 μm 

Line Scan Jiang et al. (2021) 

Imec XIMEA Closed Lab 
System with 
Robotic Armh 

Defect inspection and 
sorting 

0.04 s/ 
image 

Computer 660–980 nm 25 216 × 409 px Snapshot Chen et al. (2022) 

Specim FX10 Closed Lab 
Systemh 

Data collection and 
model deployment 

0.03 m/s Computer 400–1000 
nm 

224 1024 px Line Scan Mishra et al., 
(2022b) 

Flame-S + Flame-NIR Handheldh FDC − On Sensor 186–1700 
nm 

− − Point 
Scan 

Omidi et al. (2022) 

Senop HSC-2 DJI M600s FDC − On Sensor 500–900 nm 1000 1024 px Snapshot Sousa et al. (2022) 
Nano-Hyperspec 400–1000 

nm 
272 640 px Line Scan 

RedEdge 
multispectral 

DJI S1000s FDC 1 m/s On Sensor 475–840 nm 5 1.16 cm/px Spectral 
Scan 

Su et al. (2022) 

FDC: Field Data Collection, LDC: Lab Data Collection, s: Solar Illumination, h: Artificial Illumination: Halogen. The Nomenclature should be referred for the additional 
abbreviations. 
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4.1. Conventional method of hyperspectral data analysis 

Conventional analysis method follows a forward feed method of 
hyperspectral data analysis. Hyperspectral image cube (Fig. 6a) or point 
spectra (Fig. 6f) is acquired, followed by white and dark reference 
calibration, segmentation (Fig. 6d), spectral preprocessing (Fig. 6e, f), 
feature selection, unfolding of data i.e., converting a 3D image to a 2D 
table filled with reflectance values and using it as input for analysis. 
Many studies in the agricultural domain apply conventional pre-
processing of hyperspectral data. The steps of acquiring and analysis of 
hyperspectral data are often broadly similar and change with respect to 
the choice of sensor and mode of data collection. Data is recorded using 
manufacturer-provided software. These methods of analysis completely 
focus only on the spectral data. 

Point spectrometers do not capture the spatial information; there-
fore, no segmentation of data is required. These pure spectral signatures 
are used as input for analysis to determine equivalent object parameters. 
Which in the case of crops can be relative water content, and leaf mass 

per area (Junttila et al., 2022). Most studies do not use hyperspectral 
cubes from line scans or snapshot sensors directly even if the data is 
being recorded with a handheld device (Atsmon et al., 2022). They, at a 
minimum, apply background removal and image calibration before 
unfolding the images. Eventually, this leds to working with the spectral 
data only. Classification studies using spectral data focus on finding the 
best preprocessing method or methods to achieve the best model accu-
racy (Ahmed et al., 2022). Some studies also draw inferences by calcu-
lating various vegetative indices from the spectral data (Thorp et al., 
2015). Overall, conventional analysis of hyperspectral studies uses a 
brute force approach for analysis of spectral data. Once spectral data is 
extracted from ROIs various ML and statistical models are used to draw 
inferences and classification results. Many studies use these classifica-
tion results to suggest that real-time applications are possible, and they 
generally conclude that hyperspectral sensors can differentiate objects 
based on their chemical composition (Eddy et al., 2014). DL has shown 
potential to streamline hyperspectral analysis as discussed in detail in 
Section 4.4. 

Fig. 6. (a) A visualization of a hyperspectral data cube. (b) Hyperspectral images from different wavelengths. The image at 789.06 nm can be clearly seen to show 
more reflectance in the crop foliage as compared to other wavelengths. (c-d) Showing a basic segmentation process using k-means clustering to remove the back-
ground. (e) Shows a raw crop spectral signature and, (f) shows the same spectral signature after preprocessing using Savitzky Golay 2nd derivative as an example. 
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4.2. Hyperspectral data compression 

Hyperspectral data compression is necessary due to the multiple 
bands of spectral information. Multiple bands increase the data size, 
contribute to technical difficulty in data analysis, data storage, and real- 
time applications (Kaarna et al., 2007). For real-time applications of 
hyperspectral data, compression of multidimensional data is necessary 
and needed (Díaz et al., 2019). 

4.2.1. Lossy and lossless data compression 
Data compression techniques can be categorized in two ways as 

lossy, and lossless data compression (Miguel et al., 2006). In lossy data 
compression, redundant and irrelevant information from the data is 
permanently removed. Whereas in lossless data compression, no recor-
ded data information is lost, and the data is accessible after decom-
pression. Lossless data compression has the disadvantage of having less 
compression ratio than lossy data compression (Barrios Alfaro et al., 
2020; Luo et al., 2022). Compression techniques can be further divided 
into transform-based, prediction-based, vector quantization, compres-
sive sensing, tensor decomposition, sparse representation, multi- 
temporal, and learning-based (Dua et al., 2020). Compression based 
on hardware acceleration found that unmixing-based algorithms gave 
higher compression ratio while also being computationally demanding 
while prediction-based compression gave faster results (Altamimi and 
Ben Youssef, 2022)). Furthermore, most of these methods have been 
utilized with satellite or airborne hyperspectral sensors and must be 
thoroughly evaluated for their effectiveness with ground-based hyper-
spectral sensors. As the data from these platforms share a similar 
structure, it does not pose any challenges in the application of these 
methods to ground-based sensors. As suggested by the implementation 
of HyperLCA algorithm with AVIRIS (aircraft-based sensor) as well as 
Specim FX10 (ground-based sensor) hyperspectral data (Díaz et al., 
2019). DL convolutional networks such as M2H-Net are used for the 
reconstruction of multispectral images to hyperspectral images and the 
concept of reconstruction has helped with data compression and data 
transfer; where a small amount of data can be stored and later recon-
structed for use (Deng et al., 2021). The concept of hyperspectrogram for 
data compression is also currently being used (Corti et al., 2017). A 
hyperspectrogram is a visual representation of hyperspectral images 
that is created by combining the frequency distribution curves of score 
vectors from a principal component analysis (PCA) model. It is calcu-
lated separately on each hyperspectral image, can retain spatial infor-
mation, and has been seen to achieve multifold reduction in data size 
using hyperspectrogram. For example, in a study by Corti et al. (2017), 
the raw image size of 1.25 GB, which when unfolded was sampled to 
922 MB, and was further reduced to 300 kB by using hyperspectrogram. 
Examples of lossy data compression include spectral binning and 
dimensionality reduction (also known as feature selection). Binning 
helps decrease the cardinality of both continuous and discrete data. It 
has been successfully implemented in controlling data transfer speeds 
between the sensor and computer. Field implementation of spectral 
binning for data transfer has achieved real-time speeds of 0.036 m/s 
(Zhang et al., 2012a). While data compression is important, it is not a 
complete solution to the problem of high dimensionality as noticed by 
Okamoto et al. (2007), who used a wavelet transformation for com-
pressing data collected from a point spectrometer (ImSpector V10). They 
suggested that dimensionality reduction is a crucial part of compressing 
data size. 

4.2.2. Dimensionality reduction 
Dimensionality reduction is a lossy method of hyperspectral data 

compression. It is one of the most common pre-processing steps applied 
to hyperspectral data. The main reason for this is not just the high- 
dimensional size but the redundant information recorded in the subse-
quent wavelengths. Redundancy does not add much information to the 
analysis but ends up overfitting the analysis model. Conventional 

workflows select significant bands and then use reduced data for their 
analysis. In most cases, dimensionality reduction brings the spectral 
dimension of the HSI image to less than fifteen bands (Gao et al., 2020). 
In some cases, less than five bands are also observed. An argument can 
be made that working with 10 or fewer bands of data for analysis is the 
same as working with multispectral sensors, and hyperspectral data is 
not required in such cases. While it is technically correct, multispectral 
sensors come with a fixed set of wavelengths. These pre-selected few 
wavelengths might not offer significant distribution among different 
objects, and therefore are limited to being used by objects of similar 
reflectance properties (that is, only with objects that have good reflec-
tion with those preselected fixed wavelength bands). But hyperspectral 
sensors provide the ability to investigate, narrow down significant 
wavelengths, and therefore can be applied to a wide range of objects. 
Therefore, dimensionality reduction with hyperspectral sensors is per-
formed after investigation of the most significant wavelengths with 
respect to a particular material, and then reduced spectral data is 
applied for analysis. Whereas, in the case of multispectral sensors, there 
is no investigation step of significant wavelength involved. 

There are two families of feature selection methods, namely, filter 
and wrapper (Su et al., 2022). Filter methods evaluate the relevance of 
each feature based on statistical measures and select the top features. 
Wrapper methods evaluate the performance of an ML algorithm to select 
the best combination of features (Li et al., 2011). Support vector ma-
chine (SVM) – multiclass forward feature selection with uninformative 
variable elimination achieved the fastest runtime of 17 s (Deng et al., 
2013). Stepwise regression analysis and rank features technique have 
been used in studies on stomatal conductance (Jarolmasjed et al., 2018). 
In a comparison of five feature selection methods, it was noted that 
recursive feature elimination, which is a wrapper method, gave better 
prediction results than chi-square and SelectFromModel for disease 
identification in peanut plants (Wei et al., 2021). Current literature does 
not provide a standard feature selection algorithm or method. Instead, 
various methods are selected based on results obtained on homogenous 
data by researchers. 

4.2.3. Image segmentation or background removal 
Segmentation involves dividing an image into multiple segments or 

regions, each representing a homogeneous area with similar spectral 
properties (Fig. 6c). This step is often the first preprocessing step after 
image calibration in the analysis of hyperspectral images and plays an 
important role in improving the accuracy and efficiency of the subse-
quent analysis. This also ensures clean spectral data of objects for ML 
and DL models. Segmentation is used to remove the background 
(Fig. 6d), reduce the complexity, and enhance the performance of sub-
sequent analysis and classification tasks (Eddy et al., 2008). To some 
extent, it also helps to reduce the data size, making it easier to process 
and analyze (Li et al., 2021). Ground hyperspectral image segmentation 
can be performed using various techniques, including clustering, 
morphological operations, and edge detection. PCA and vegetative 
indices like normalized difference vegetative index (NDVI) are used for 
the automated segmentation of plants with respect to ground (Williams 
et al., 2017), along with DL models trained on RGB images. This involves 
working with a pseudo-RGB image of the hyperspectral cube and 
generating a logical mask that can be applied to the hyperspectral cube. 
The choice of segmentation method depends on the specific re-
quirements of the analysis and the type of data being processed (García- 
Santillán et al., 2017). Image segmentation is important in studies that 
work with reflectance values as it allows to keep the reflectance values 
of ROIs pure by removing reflectance values from surrounding areas. 

4.3. Implementation of FPGA and GPUs with hyperspectral sensors 

To ensure the efficient processing of large amounts of hyperspectral 
data, many researchers have explored the use of field programmable 
gate arrays (FPGAs) and GPUs (Fig. 7) in the implementation of ground 
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hyperspectral sensors (Fenzandez et al., 2016). FPGAs are integrated 
circuits that can be reconfigured after manufacturing, allowing for 
custom logic design and redesign (Rosario et al., 2014). This flexibility 
makes FPGAs well-suited for the processing of hyperspectral data, as 
they can be configured to perform specific image processing tasks. For 
instance, FPGAs have been used to implement hyperspectral data 
compression algorithms (Nascimento and Vestias, 2016), reducing the 
amount of data that needs to be transmitted and stored. It has also been 
used to perform real-time data processing, enabling on-the-fly analysis 
of hyperspectral data during data collection. Recent advancements in 
the field have led to a significant increase in processing speed for 
hyperspectral images. Specifically, the use of a system-on-chip (SoC) 
FPGA has resulted in processing times that are 216 times faster for 
hyperspectral images of size (512 × 614 × 224) when compared to a 256 
core GPU (Nascimento et al., 2020). GPUs are specialized processors 
designed to handle the complex calculations required for graphics pro-
cessing (Díaz et al., 2019). It has been found to be highly effective for a 
wide range of hyperspectral data processing tasks (Gao et al., 2016), 
including image classification, and dimensionality reduction. GPU- 
accelerated algorithms have been shown to be much faster than tradi-
tional CPU-based algorithms, enabling the processing of large amounts 
of hyperspectral data in real-time (Horstrand et al., 2019a). Further-
more, the use of GPUs allows for the implementation of sophisticated 
algorithms, such as deep neural networks (Bouguettaya et al., 2022). 
The use of FPGA and GPU in the implementation of ground hyper-
spectral sensors has proven to be highly effective in improving the 
processing speed and accuracy of hyperspectral data (Table 4). These 

technologies have enabled new applications of hyperspectral sensors, 
including real-time data analysis and the implementation of complex 
algorithms (Horstrand et al., 2019a). As the demand for real-time 
analysis of hyperspectral data continues, the use of FPGA and GPU in 
hyperspectral data processing is expected to become even more wide-
spread in the future. Implementation of multiclass support vector ma-
chines (MSVM) on low complexity FPGA (Artix-7) is said to achieve real- 
time classification speeds on datasets captured using airborne and 
ground hyperspectral sensors (Gyaneshwar and Nidamanuri, 2022). In 
some instances, FPGAs have also outperformed embedded GPUs from 
NVIDIA in their implementation of compression algorithms. 

4.4. Machine learning and deep learning applied to hyperspectral data 

ML and DL are two specializations in artificial intelligence that are 
increasingly being used in the analysis of data from ground hyper-
spectral sensors (Jordan and Mitchell, 2015). Both technologies have 
been utilized in the agricultural domain for various applications, 
including studying crop yield, diseases, and pest detection, performing 
classification tasks, and monitoring crop growth (Table 5). ML models 
rely on spectral data and do not incorporate spatial information. DL, a 
subset of ML, has enabled the integration of spatial information with 
spectral data. However, there are variations like one-dimensional con-
volutional neural networks (1D-CNN) within DL that also utilize only 
spectral information. 

ML algorithms, such as decision trees (DT), random forests (RF), and 
SVM, can be used to classify hyperspectral data into different categories, 

Fig. 7. Commercially available (a) FPGA, Xilinx reconfigurable board XUPV2P and, (b) NVIDIA Tesla C1060 GPU. (c) Architecture overview of an online- 
classification framework with FPGA. (d) GPU architecture showing batch processing capabilities on multiple threads. (González et al., 2013; Gyaneshwar and 
Nidamanuri, 2022). 
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Table 4 
Research articles that used FPGA and GPUs for their analysis.  

Sensor name Algorithm/ 
technique 

Findings Authors 

AVIRIS PCA on 
FPGA 

Compared to a CPU, an 
FPGA achieved a speed 
increase of 10.08 s. 

Fenzandez et al. 
(2016) 

PCA Real-time functionality 
was achieved by applying 
the complete unmixing 
chain on a NVIDIA GPU 
Tesla C1060 architecture. 

Sanchez and 
Plaza (2011) 

N-FINDR 
algorithm 

The test machine 
demonstrated high 
scalability for band 
selection using GPU-based 
parallel implementations. 

Yang et al. 
(2011)  

VCA on 
FPGA 

The endmember extraction 
was achieved without the 
need for a dimensionality 
reduction preprocessing 
step. 

Rosario et al. 
(2014)  

HySime When comparing the 
HySime algorithm with 
CPU, GPU, and DSP, it was 
found that the GPU 
performed better. 

Torti et al. 
(2014) 

G-OMNF The proposed GPU 
implementation 
demonstrated the ability to 
perform in real-time with 
hyperspectral data sets. 

Sanchez and 
Plaza (2011)  

VCA Achieved unmixing 
without dimensionality 
reduction. 

Nascimento 
et al. (2015) 

PCA on 
FPGA 

Achieved 90 % more speed 
implementing PCA on 
FPGA vs CPU. 

Fenzandez et al. 
(2016) 

VCA on 
FPGA 

Proposed an FPGA-based 
architecture for extracting 
endmember signatures 
using a fully automatic 
VCA method that does not 
require a dimensionality 
reduction preprocessing 
step. 

Nascimento and 
Vestias (2016) 

SpeCA Parallel implementation of 
SpeCA on GPUs using the 
Compute Unified Device 
Architecture (CUDA), 
achieving 21x times more 
speed. 

Sevilla et al. 
(2016)  

KPCA KPCA (Kernel PCA), a 
nonlinear dimensionality 
reduction method, and 
proposed a parallel KPCA 
algorithm (KPCA-G) based 
on the CPU/GPU 
heterogeneous system. 

Zhou et al. 
(2017) 

FastICA Results show that their 
parallel implementations 
have excellent 
performance and 
scalability, achieving real- 
time HSI dimensionality 
reduction on a 
heterogeneous platform. 

Fang et al. 
(2017)  

SPCA Object-linked intelligent 
classification method for 
onboard classification of 
hyperspectral images, 
utilizing simpler neural 
networks and processes 
were proposed. 

Mishra et al., 
(2017a) 

Multilayer 
perceptron 

Compared algorithms 
execution and speedup 
time for CPU and GPU and 

Penalver et al. 
(2017)  

Table 4 (continued ) 

Sensor name Algorithm/ 
technique 

Findings Authors 

found GPU to perform 
exponentially faster with 
75 band images. 

PCA The author discusses the 
implementation of PCA on 
a NVIDIA GPU and a 
Kalray manycore, 
highlighting the trade-off 
between performance and 
power consumption, and 
suggesting the efficiency of 
MPPAs. 

Martel et al. 
(2018) 

KPCA Intra-node parallelization 
using multi-core CPUs and 
many-core GPUs are 
exploited to improve the 
parallel hierarchy of 
distributed-storage KPCA. 

Xu et al. (2018) 

PCA This work has explored the 
performance and energy 
efficiency of a common 
dimensionality reduction 
algorithm (PCA) for 
different HS image 
formats, i.e., data layouts 
in memory, (BSQ, BIP, BIL) 
using the embedded GPU 
included in NVIDIA’s 
Jetson TX1. 

Aragon et al. 
(2019) 

MSVM Determined speed up in 
classification of different 
datasets when applying 
MSVM on low complexity 
real-time FPGA and 
software. 

Gyaneshwar 
and Nidamanuri 
(2022)  

Ground 
hyperspectral 
sensors 

DR on FPGA Used multiple algorithms 
for dimensionality 
reduction, image 
compression and anomaly 
detection. 

Diaz et al. 
(2020) 

HW-LbL- 
FAD on 
FPGA 

Achieved anomaly 
detection in hyperspectral 
images with a speed of 
0.51 s/image using an 
FPGA. 

Caba et al. 
(2022) 

Anomaly 
detection 

Confirmed increase 
efficiency of GPU over CPU 
for anomaly detection in 
real-time with aerial 
hyperspectral data. 

Tarabalka et al. 
(2009)  

Pavia University 
and Indian 
Pines 

Manifold 
learning 

Implementation of these 
algorithms on CUDA based 
GPU architecture increased 
its performance. 

Campana-Olivo 
and Manian 
(2011) 

gaPCA Simple implementation of 
gaPCA algorithm on CPU, 
and GPU. 

Machidon et al. 
(2020) 

KPCA Hybrid of linear and 
nonlinear models can help 
reduce computational 
complexity. 

Mohan and 
Venkatesan 
(2020) 

LPDBL on 
FPGA 

The hyperspectral target 
detection based on the 
LPDBL algorithm was 
proposed. Due to its 
simple, excellent 
generalization ability, and 
quick processing of LPDBL, 
it was used for HSI target 
detection. 

Shibi and 
Gayathri (2021) 

(continued on next page) 
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such as different crops or soil types (Khan et al., 2022). ML algorithms 
can also be used to perform regression analysis, making predictions 
about crop yields or disease severity based on hyperspectral data 
(Thomas et al., 2018). ML and statistical analysis techniques necessitate 
human input in the form of parameter selection by a subject matter 
expert, making them input-intensive methods (see Table 6). 

DL algorithms, on the other hand, are more advanced than ML (Wang 
et al., 2021). DL consists of artificial neural networks with multiple 
hidden layers that allow for more complex data processing (Mishra 
et al., 2022a). DL algorithms are particularly well suited to tasks that 
involve complex relationships between inputs and outputs. For example, 

DL algorithms have been used to detect crop diseases by analyzing 
hyperspectral images and identifying spatial patterns in the data that 
correspond to different diseases (Passos and Mishra, 2022). The benefits 
of using ML and DL in the analysis of ground hyperspectral data in 
agriculture include improved accuracy in crop yield predictions, early 
detection of diseases and pests, the ability to monitor crop growth in 
real-time, and possible deployment of these models to robots and plat-
forms. However, there are also some limitations to consider: ML and DL 
algorithms require large amounts of training data and complex algo-
rithms that are difficult to interpret making it challenging to understand 
the underlying relationships between inputs and outputs. ML algorithms 
are simpler and easier to interpret but may not be as effective in pro-
cessing complex relationships between inputs and outputs. DL algo-
rithms are more complex and can process large amounts of data and 
identify complex relationships between inputs and outputs. 

DL algorithms have emerged as a promising solution for HSI appli-
cations due to their automation capabilities, robustness, high accuracy, 
and scalability (Passos and Mishra, 2022; Xu et al., 2020). The auto-
mation of feature extraction and classification reduces the need for 
manual feature selection, speeding up the process (Fig. 9) (Wang et al., 
2021). The robustness of these algorithms to noise and variations in the 
data makes them ideal applications where data quality can be an issue. 
The high accuracy of these algorithms, especially convolutional neural 
networks (CNNs), is due to their ability to learn complex patterns and 
features in large amounts of data. These algorithms can also be easily 
scaled to handle large amounts of data, and transfer learning can further 
enhance their scalability. Raw hyperspectral image dataset can be used 
to train the CNN model and, in many cases, has been reported to 
outperform traditional ML models (Qi et al., 2023). 

4.4.1. Addressing the issue of system memory exhaustion for high- 
dimensional data 

During DL training, large sizes of individual hyperspectral images 
can quickly exhaust the system memory even with a limited number of 
training samples. This is a major issue as DL models require a large 
number of training samples for proper model generalization. If the data 
size itself limits this, a considerable reduction in spatial resolution and 
spectral resolutions needs to be performed. Dimensionality reduction 
techniques work well for ML applications. However, for DL applications 
that use 3D data cubes as input, handling the data becomes even more 
challenging. These deep learning applications struggle to support very 
large datasets. Distributed learning or parallelism techniques are model 
training frameworks that allows distribution of data or model over 
multiple workers during training, these workers (systems) can be CPUs, 
GPUs, and TPUs (Gupta and Raskar, 2018). Using these frameworks 
multiple workers are utilized to conduct the model training. In data- 
distributed learning, a subset of input data is equally shared among 
the members and each member receives a copy of the replicated model. 
Whereas in model-distributed learning parts of the model are distributed 
to each worker and the data is replicated (Langer et al., 2020; Sergeev 
and Del Balso, 2018). Spatial parallelism works in a similar principle but 
instead of dividing the data or model as a whole it shards the spatial 
dimension of an individual image itself and shares it with available 
workers. This can allow the utilization of high spatial and spectral res-
olution hyperspectral images for DA training. Currently, spatial paral-
lelism is only supported on Google’s TPU infrastructure using a library 
called Mesh-Tensorflow (Shazeer et al., 2018). While application of 
spatial parallelism with agriculture hyperspectral data could not be 
found. A recent study utilized medical images of resolution 512 × 512 ×
512 to train a 3D Unet model (Hou et al., 2019). This is a promising area 
that will ensure more adaptability of hyperspectral data with state-of- 
the-art DL models. 

4.4.2. Data augmentation of hyperspectral images 
Data augmentation is a well-established technique for DL where 

mathematical operations (e.g., rotation, blur, shear, sharpen, brightness, 

Table 4 (continued ) 

Sensor name Algorithm/ 
technique 

Findings Authors 

RFE and 
SFM 

Identification of optimal 
wavelengths using 
multiple feature-selection 
methods in the scikit-learn 
ML library to detect peanut 
plants infected with 
A. rolfsii at various stages 
of disease development. 

Wei et al. 
(2021) 

KMNF GPU implementation 
achieves 60 times more 
speed. 

Xue et al. 
(2021) 

Wavelet 
reduction 

Achieved 90 % less speed 
in training CNN models 
using FPGA based parallel 
accelerator. 

Baba and Bonny 
(2023)  

− pICA High data transfer rate on 
FPGA 

Du et al. (2004) 

Note: The nomenclature should be referred for the abbreviations used. 

Table 5 
Accuracies of deep learning and machine learning models in agricultural 
applications.  

Application Features Model Accuracy References 

Basal Stem 
Rot 

Band 
Subset (1) 

VGG16  91.93 % Yong et al. (2023) 

Potato Late 
Blight 

Full bands 
(204) 

PLB-2D-3D-A 
(2D-3D CNN)  

73.90 % Qi et al. (2023) 

Band 
Subset (6) 

PLB-2D-3D-A 
(2D-3D CNN)  

79.00 % 

Coffee Beans 
Defect 

Full bands 
(25) 

2D-3D CNN  96.40 % Chen et al. (2022) 

Band 
Subset (3) 

2D-3D CNN  98.60 % 

Strawberry 
Ripeness 

Band 
Subset (2) 

AlexNet  98.60 % Gao et al. (2020) 

Band 
Subset (2) 

SVM  95.00 % 

Yellow Rust Full 
Bands 
(125) 

DCNN  85.00 % Zhang et al., (2019a) 

Full 
Bands 
(125) 

RF  77.00 % 

Charcoal rot Full 
Bands 
(240) 

3D-CNN  95.73 % Nagasubramanian 
et al. (2019) 

Orobanche 
cumana 

Full 
Bands 
(162) 

Logistic 
Regression  

89.00 % Atsmon et al. (2022) 

Band 
Subset 
(10)  

82.00 % 

Weed and 
crops 

Band 
Subset 
(10) 

PLS-DA  86.20 % Ahmed et al. (2022)  
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Table 6 
Application of hyperspectral imaging in precision agriculture.  

4 Subject Sensor Mode Range (nm)  ML/DL Study Authors 

Disease 
Detection & 
classification 

Oil Palm Cubert FireflEYE 
S185 

Snapshot 890–950 L DL: VGG16, RCNN Detection of basal stem rot 
in oil palm.  

Yong et al. 
(2023) 

Winter Wheat ASD FieldSpec 
spectrometer 

Point 
Scan 

350–2500 L ML: XGBoost Study of XGBoost classifier 
with feature selection using 
correlation analysis random 
forest for vegetative indices, 
achieving 87.1 % overall 
accuracy. 

Huang et al. 
(2022) 

Apples Specim N17E Line 
Scan 

900–1700 L ML: GTB Codling Moth pest 
classification in Apples 
(91.6 % Acc) supervised 
model 

Ekramirad 
et al. (2022) 

Potato Specim FX10 Line 
Scan 

400–1000 LF ML: Logistic 
Regression 

Lab vs Field detection 
model: difficulty in 
developing one model for 
both conditions (poor lab 
model performance on field 
data and poor field model 
performance on lab data) 

Appeltans 
et al. (2022) 

Leek Specim FX10 Line 
Scan 

400–1000 LF ML: 
Logistic Regression 

Logistic regression 
supervised ML model was 
trained on field 
hyperspectral data. The 
model was not tested in real- 
time conditions. 

Appeltans 
et al. (2021) 

Scindapsus aureus Specim IQ 
(handheld) 

Line 
Scan 

400–1000 L ML: SVM A SVM classification model 
was used to detect defects in 
Scindapsus aureus leaves 
through the analysis of PCA- 
based spectral feature 
extraction in a laboratory 
setting. 

Xiao and 
Wang (2020) 

Apple PS-V10E 
SPECIM 

Line 
Scan 

356–1000 L ML: DT, KNN, 
ensemble bagged, 
DT and weighted K 
nearest neighbor 

Ensemble bagged 
supervised ML model was 
trained to classify apple 
disease. 

Shuaibu et al. 
(2018) 

Apple PS-V10E 
SPECIM 

Line 
Scan 

356–1018 L DL: DNN, FCN The paper presents the 
mRMR method, which is 
particularly useful for 
handling a vast number of 
options such as hyper- 
spectral images due to its 
lower computational 
complexity. 

Park et al. 
(2018) 

Soybean Seeds Headwall VNIR- 
A 

Line 
Scan 

400–1000 L ML: TPE-RBF-SVM Multi-class Soybean seed 
classifier (TPE-optimized 
RBF-SVM) 

Zhao et al. 
(2022) 

grapevine Specim 
Imspector V10E 

Line 
Scan 

380–1028 L ML: PLS Classification Diago et al. 
(2013)  

Crop 
Monitoring 

Apple ImSpector V10E Line 
Scan 

400–1000 and 
1000–2500 

L ML: SVM, SLOG, 
SMO 

Classification Siedliska et al. 
(2014)  

Winter Wheat FieldSpec4 
spectrometer 

Point 
Scan 

350– 2500 L ML: 
GBRT 

Chlorophyll content 
prediction: BP NN and GB 
RT Model examined. 

Wang et al. 
(2022) 

Wheat ImSpector V10E- 
PS 

Line 
Scan 

360–1025 L ML Spectral and textural 
information fusion for 
successful image 
classification and crop 
monitoring (supervised and 
unsupervised ML) 

Jiang et al. 
(2021) 

Rice ImSpector 
N17E; 

Line 
Scan 

874–1734 L ML: BPNN, RF, 
PLSR 

Compared three feature 
selection method vegetation 
indices, model-based 
features, and PCA 

Elsherbiny 
et al. (2021) 

Wheat and Maize Cubert S185 Snapshot 450–950 F ML: LM, BP, SVM, 
and RF 

In lab analysis of Leaf 
chlorophyll content was 
estimated by linear 
regression, back 
propagation neural 
network, SVM 

Zhu et al. 
(2020) 

Cotton, winter wheat, 
maize 

ASD FieldSpec Point 
Scan 

350–2500 L ML: ANN, SVMR, 
PLSR, PROSAIL 

The findings showed that 
there was no one ideal 

Nie et al. 
(2023) 

(continued on next page) 
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Table 6 (continued ) 

4 Subject Sensor Mode Range (nm)  ML/DL Study Authors 

model for accurately 
calculating the LAI of 
various crops because the 
correlation between specific 
hyperspectral reflectance 
and the LAI of different 
crops varied. 

Strawberry GaiaField-V10E Snapshot 370–1015 L ML: SVM, AlexNet 
CNN 

Supervised classification 
study of strawberry ripeness 
done in lab. 

Gao et al. 
(2020) 

Apple SVC HR-1024i Point 
Scan  

360–2500 L ML: PLSR Classification Jarolmasjed 
et al. (2018) 

Sesame oil Specim 
ImSpectorV10E 

Line 
Scan 

325–1075   Comparison of various 
feature selection methods 
like SVM-MFFS, SPASVM, 
UVESVM 

Deng et al. 
(2013)  

Weed detection Barnyard grass and 
Weedy rice in rice. 

ImSpector V10E Line 
Scan 

380–1024 L ML: Linear kernel 
based SVM 

Leaf data was used to make 
the training data. This 
approch does not 
incorporate real-time data 
processing. 

Zhang et al., 
(2019b) 

Corn vs Barnyard, 
Yellow nutsedge, Crab, 
Quack, Canada Thistle, 
Sow thistle, Lamb’s 
Quarter, Redroot 
pigweed 

CASI Line 
Scan 

409–947 nm F Statistics, DT, and 
Artificial Neural 
Network 

Preferred DT over ANN even 
though ANN had better 
results. Due to DT’s ability 
to form precise rules 

Goel et al., 
(2003a); Goel 
et al., (2003b) 

Canola, Peas and Wheat 
Vs Redroot pigweed and 
Wild oat 

prototype  400–1000 nm F NN and MLC Determined that NN was a 
better classifier than MLC. 

Eddy et al. 
(2006) 

Turfgrass Vs Dallisgrass, 
southern crabgrass, 
eclipta and Virginia 
buttonweed 

− Point 
Scan 

350–2500 nm G, 
F 

ML/BSBC, SDA ML/BSBC performed better 
than discriminant analysis. 
Classification results were 
better with field data as 
compared to greenhouse 
data. 

Hutto et al. 
(2006) 

Sunflower Vs Ridolfia 
segetum 

ASD FieldSpec Point 
Scan 

325–1075 nm F Statistical Studied statistical difference 
between soil and different 
phenological stages of 
sunflower and R. segetum. 

Peña-Barragán 
et al. (2006) 

Sugarbeet Vs Wild 
buckwheat, field 
horsetail, green foxtail, 
and common chickweed 

ImSpector V10 Line 
Scan 

400–1000 nm F Wavelet 
transformation, DA 

Data compression was 
achieved using wavelet 
transformation and stepwise 
variable selection and 
statistical discriminant 
analysis performed better 
classification. 

(Okamoto 
et al., 2007) 

Field pea, canola, spring 
wheat Vs Redroot 
pigweed and wild oat 

Filter + CCD 
(Sony, 
ICX414AL) 

Line 
Scan 

400–1000 nm F MCARI, HS-ANN, 
MLC 

Image background was 
removed from training 
images. Authors found HS- 
ANN to give better results 
and suggested it as more 
suitable for real-time 
application. 

Eddy et al. 
(2008) 

Soybean Vs Goosefoot 
pigweed, small 
crabgrass, field 
horsetail, pearlwort 

ImSpector V10 Line 
Scan 

360–1010 nm F LDA, NN NDVI was used to remove 
soil background. NN 
performed better than LDA 
and PCA gave better results 
than raw data. But raw data 
has faster processing 

Suzuki et al. 
(2008) 

Winter Wheat Vs Wild 
oat and canary grass 

ASD FieldSpec Point 
Scan 

325–1075 nm F SDA Suggested complete 
phenological stage 
classification using 15 bands 
from Red, Green, Blue and 
NIR regions 

Gómez-Casero 
et al. (2010)  

Tomato Vs 
Black nightshade, 
redroot pigweed 

Photometrics 
CoolSNAPcf 

Line 
Scan 

384–810 nm L SDA, PCA, CDA A global calibration method 
was developed that 
achieved a 92.2 % 
classification rate and 
solved the temperature 
sensitivity problem in single 
temperature models. 

Zhang and 
Slaughter 
(2011) 

(continued on next page) 

B.G. Ram et al.                                                                                                                                                                                                                                  



Computers and Electronics in Agriculture 222 (2024) 109037

15

contrast, mirror) are applied to the data, tuning them slightly to increase 
the number of training samples. Hyperspectral data collection is labor 
and time-intensive, often resulting in limited training samples. 
Increasing the number of training samples helps the model to better 
generalize in classification tasks. Online and offline modes of data 
augmentation can be currently found in the literature. In online mode 
the augmentation is applied to the data during the training of models 
and in offline mode data is augmented and saved before the training 
(Nalepa et al., 2019; Rochac et al., 2019). Further, augmentations itself 
can be divided into two categories, (1) model-based augmentation, and 
(2) spatial transformation-based augmentation. Model-based augmen-
tation uses DL models to create new variations of data. Generative 
adversarial network (GANs) utilizes the generator and discriminator 
blocks to generate new data from a given input data. The generator 
creates synthetic data to mimic real data, aiming to fool the discrimi-
nator. The discriminator, receiving both real and synthetic data, is 
trained to distinguish between them. Misclassifications are penalized, 

leading to the generator improving its data realism over time. There 
have been multiple variants of GANs, out of which deep convolutional 
generative adversarial networks (DCGANs) are mostly utilized in HSI 
(Tan et al., 2024). While CNNs support 3D and 1D data, current appli-
cations utilize DCGAN for 1D spectral data and have been reported to 
grain approximately a 10 % increase in classification results (Zhang 
et al., 2022). DCGANs are also utilized with ML models like DT, RF, and 
SVM (Tan et al., 2024). Spatial transformation-based data augmenta-
tions include rotate, flip, transpose, random occlusion, and zoom 
(Fig. 8). These methods can be applied to the data in an online or offline 
mode. Data augmentations, whether model-based or spatial 
transformation-based methods have proven results of helping the model 
in better generalization and classification accuracy (Haut et al., 2019). 

Table 6 (continued ) 

4 Subject Sensor Mode Range (nm)  ML/DL Study Authors  

Tomato Vs 
Black nightshade, 
redroot pigweed 

Photometrics 
CoolSNAPcf 

Line 
Scan 

400–795 nm F CBD A study conducted over 
three seasons investigated 
the effects of seasonal 
variability in environmental 
conditions. 

Zhang et al., 
(2012a)  

Annual ragweed, 
mugwort 

ImSpector V10E Line 
Scan 

100–1000 nm L Statistical Determined that 550 nm 
and 650 nm gave class 
separability between 
ragweed and mugwort 

Dammer et al. 
(2013)  

Wheat Vs 
Broad leaf and grass 
weed 

ImSpector V10E Line 
Scan 

300–1000 nm F PLS-DA Six PLS-DA models were 
trained. Classification 
included sunlit and shaded 
areas of images along with 
soil. 

Herrmann 
et al. (2013)  

Pine Vs 
Bugweed 

AISA Line 
Scan 

400–900 nm F# SVM SVM-RFE was used for 
feature selection and 
obtained 90 % accuracy in 
classifying aerial images of 
Bugweed patches in pine 
forests. 

Atkinson et al. 
(2014)  

Field pea, spring wheat, 
canola Vs 
Wild oats, redroot 
pigweed 

Filter + CCD 
(Sony, 
ICX414AL) 

Line 
Scan 

400–1000 nm F ANN, PCA, SDA Study show that reduced 
band set (7 bands) achieved 
ANN classification result 
that was similar to the full 
band set data (61 bands) 

Eddy et al. 
(2014)  

Palmer amaranth 
(resistant vs 
susceptible) 

Resonon Pika II Line 
Scan 

394.3–896.917 
nm 

G, 
F 

FLDA, Maximum 
Likelihood 

14 bands out of 240 bands 
were used and achieved an 
accuracy of 93.5 %. They 
found higher reflectance in 
visible regions for 
susceptible plants and 
infrared regions for resistant 
plants. 

Reddy et al. 
(2014)  

Cabbages Vs 
Barnard grass, small 
pigweed, goosegrass, 
crabgrass, and green 
foxtail 

SWIR-N25E Line 
Scan 

1000–2500 nm L SAM Pixel wise classification 
using ENVI and HSI 
analyzer. Applied 
preprocessing steps. This 
study is an example of high 
data curations. 

Wei et al. 
(2015)  

Soybean Vs Non- 
glyphosate resistant 
redroot pigweed, 
Palmer amaranth 

FieldSpec 3 Point 
Scan 

350–2500 nm G RF Random forest binary 
classifiers were trained to 
classify soybeans against 
weeds. 

Fletcher and 
Reddy (2016)  

Maize Vs 
Creeping buttercup, 
Creeping thistle, 
charlock, chickweed, 
common dandelion, 
annual bluegrass, 
redshank, common 
nettle, common yellow 
woodsorrel and black 
medic 

Inspector V9 Line 
Scan 

435–834 nm F SOM, MOG, SVM, 
AE-NN  

One class classifier was 
trained on pixel data. 

Pantazi et al. 
(2016) 

L: Lab, F: Field, ML: Machine Learning, DL: Deep Learning, #Airborne. The nomenclature should be referred for the additional abbreviations. 
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5. Applications of hyperspectral in precision agriculture 

5.1. Weed identification or classification studies 

As weeds look spatially similar to crops, especially at an early stage. 
Implementation of HSI for weed identification is seen as a possible so-
lution for the early detection of weeds. For proper weed management, 
the fields must be relieved of weed population before they take growth 
advantage over the crops. While with RGB images the trained models 
mostly rely on the spatial or textural features of objects to draw their 
inferences. The problem of differentiating between objects of similar 
color and texture can be solved with high spectral resolution data 
captured with hyperspectral sensors (Dammer et al., 2013; Okamoto 
et al., 2007). Due to this hyperspectral data can also be used to differ-
entiate between biotypes of the same plant. Such as glyphosate-resistant 
and susceptible Palmer amaranth, which has been found to differ in 

reflection near the VNIR region (Reddy et al., 2014). Pure spectral sig-
natures collected using point spectrometers in the VNIR region can 
classify different weeds like kochia, lamb’s quarters, and waterhemp 
(Shirzadifar et al., 2018). Weeds are known to produce a very large 
number of seeds and grow herbicide resistant over time. Hyperspectral 
data studies have found better accuracy in differentiating germinating 
and non-germinating seeds and observed a strong correlation between 
physiological properties and herbicide response of Palmer amaranth 
using hyperspectral data. Which has been impossible with models 
trained on RGB images (Matzrafi et al., 2017). Portable hyperspectral 
sensors have the advantage of high spatial resolution. Studies that use 
airborne sensors often are useful to determine weed patches instead of 
individual weed crops (Atkinson et al., 2014). Using airborne sensors 
such as the Airborne Imaging Spectrometer for Applications (AISA) 
detection of small weed patches attains a low success rate due to low 
spatial resolution. However, the models excel on weed patches spread on 

Fig. 8. Examples of various spatial transformation-based data augmentation techniques applied to hyperspectral images. The red marks depict the change in 
orientation from the original data (Acción et al., 2020). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 9. A simplified illustration of a very basic 3D-CNN architecture.  
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a higher surface area (Peerbhay et al., 2016). Thereby suggesting the 
increased efficiency of ground and UAV-mounted hyperspectral sensors 
in comparison to aircraft-mounted or satellite-mounted sensors in the 
context of spatial resolution. 

Various ML methods are used to train supervised classification 
models to classify weeds from crops. Irrespective of the mode of data 
collection. This data is unfolded and preprocessed (Ahmed et al., 2022). 
ML model classification is therefore highly offline and requires intense 
knowledge of the data. Due to this offline nature, ML analysis is often 
recommended for investigation wavelength interaction with a material. 

DL utilizes spatial and spectral information from hyperspectral data 
thereby keeping information generally lost due to unfolding. DL models 
learn from multiple hidden layers that replicate neurons in the human 
brain. These layers work in a “black box” manner i.e., the models’ 
learning parameters used to draw inferences are unknown. Multiple 
implementations of CNN models are seen in the literature. Authors have 
reported increased weed classification accuracies with fused 2D and 3D 
CNN models (Farooq et al., 2019). The 3D CNN-based networks such as 
the BS-Net FC are also used for feature selection and are reported to have 
increased accuracy compared to ML feature selection methods. DL 
models require a large amount of data for training and that demand is 
fulfilled using data augmentation (Diao et al., 2022). 

Various platforms are developed utilizing HSI for weed identifica-
tion. Custom fabricated sensor modules that record only the required 
significant wavelengths thereby reducing data and computational 
complexity at the first step itself are being used, these sensors are often 
supported by independently designed circuit boards or FPGAs and have 
been able to achieve near real-time speeds in weed identification 
(Symonds et al., 2015). Some platforms only focus on data collection 
without actuation tasks. One class of weed and crop classifiers trained on 
data collected using autonomously driven platforms has been reported 
to give good accuracy results (Pantazi et al., 2016). Multiclass models for 
weed identification are also developed which are trained data collected 
using platforms (Ahmed et al., 2022). Only a handful number of studies 
build platforms that can achieve analysis and actuations in real-time. 
Zhang et al. (2012a) conducted a two-part study of the identification 
of weeds and application of heated oil as a solution in row crops infested 
with weeds was able to achieve a ground speed of 0.04 m/s using a 
Bayesian classifier trained on 13 wavelengths in the range of 384–810 
nm. 

5.2. Detection of disease and pest 

Plant growth can be adversely affected by disease, stress, and pest 
infestations, which can result in reduced yield and quality or even 
complete growth cessation. The VNIR region has been useful in detect-
ing white tip disease and Orobanche cumana parasitism in sunflower 
plants (Atsmon et al., 2022). Logistic regression models trained on 
hyperspectral data can be used to classify plant health and different 
stages of disease damage at pre-symptomatic stage (Appeltans et al., 
2021). Plant stress due to the presence of heavy metals like Hg has been 
detected using the NIR regions (Yu et al., 2021). The requirement for 
background removal and selection of diseased ROIs to improve the data 
quality is essential for some applications where the disease affected area 
is considerably smaller and surrounded by other areas. Such as the 
charcoal rot disease in soybean stems (Nagasubramanian et al., 2019). 
Spectral domain studies also apply various vegetation indices to deter-
mine the correlation of diseases with plant growth (Xue et al., 2023). 
Some implementations of 3D-CNN models have also used complete 
spectral bands as training input. This removes the need for the time- 
consuming feature selection step. Handheld hyperspectral sensors like 
the Specim IQ are available that have made data collection using the line 
scan method easy. DCNN models trained on data captured using UAVs 
have rendered good detection results for yellow rust disease in winter 
wheat (Zhang et al., 2019a). While DL has been proven to remove some 
intermediate analysis steps. Studies mentioned above do not apply 

trained models for real-time applications and focus on training models 
that are (1) able to accurately classify/detect subjects, and (2) reduce 
some preprocessing steps. While real-time applications of hyperspectral 
in disease and pest detection are limited. It is not debatable that real- 
time defect detection and actuation require low spectral bands to 
accommodate the processing and data transfer needs. DL provides the 
real-time speeds for such applications. Variations of CNN models like the 
fused 2D-3DCNN models have achieved analysis speeds of 0.03 s/image 
in inspecting 32 coffee beans in a single image and sorting them with a 
robotic arm (Chen et al., 2022). 

5.3. Biochemical and biophysical analysis 

Phenotyping and estimation of plant health can be determined by 
key factors such as leaf area index, chlorophyll and nitrogen content, 
crop yield, and water content. HSI using spectroscopy has proven to be 
more effective in detecting the impact of these parameters compared to 
multispectral and thermal imaging (Jarolmasjed et al., 2018). Water 
content is an important parameters for plants’ health and freshness. A 
wavelength range of 1350–1650 nm has been found to successfully 
determine relative water content from hyperspectral data collected in 
field and laboratory conditions (Junttila et al., 2022). Preprocessing 
steps for hyperspectral data are important. Using raw spectral data for 
training ML models reduces accuracy in determining biochemical and 
biophysical parameters (Singh et al., 2022). Accurate fertilization 
planning for trees requires the quantification of nitrogen (N), as it is the 
primary limiting factor after water. Partial least square regression 
(PLSR) and vegetation indices have been used to determine nitrogen 
content in plants and physiological changes during daytime and drought 
conditions (Mertens et al., 2021; Rubio-Delgado et al., 2021). Explora-
tion of the biochemical properties of plants generally depends on spec-
tral data over spatial data. Studies that determine water content, 
nitrogen content or plant stress often use point scan spectrometers due to 
their high spectral resolution. Another reason for this is that biochemical 
factors do not necessarily depend on plants’ physical parameters but 
their chemical composition. Hyperspectral platforms include the phe-
notyping platform called Phenovision (VIB-UGent Center for Plant Sys-
tems Biology, Ghent, Belgium) which facilitates automated temporal 
data collection using multiple sensors. Two of which are line scan 
hyperspectral sensors (ImSpector V10E and N25E) that provide a com-
bined spectral range of 400–2500 nm. Vigneau et al. (2011) used a line 
scan sensor (HySpex VNIR 1600–160) mounted 1 m above the foliage on 
a linear rail mounted on a tractor with a spectral range of 400–1000 nm. 
No steps were taken to introduce artificial lighting sources as is normally 
observed and data was collected using sun irradiance. The plants 
captured were isolated by human intervention so that there was no 
occluding of leaves. 

6. Applicability of hyperspectral imaging in precision 
agriculture 

Implementation of multidimensional data in real-time systems is a 
multifaceted challenge. The ever-evolving fields of computer science 
and artificial intelligence are making it possible to work with high- 
dimensional data at comparable real-time speeds. However, in most 
current research, this is accomplished only after dimensionality reduc-
tion. As a result, the efficacy of utilizing HSI in contrast to RGB or 
multispectral images can be scrutinized. HSI has proven successful in 
scenarios where RGB imaging has been ineffective. As such, HSI has a 
distinct set of applications compared to RGB imaging. The applicability 
of HSI data, HSI platforms, and related advanced analysis and models 
are discussed subsequently. 

6.1. Justification for using hyperspectral over RGB and multispectral data 

Hyperspectral data is valuable due to its ability to conduct 
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spectroscopic analysis of materials. This enables the identification of 
biochemical plant traits, as well as the detection of disease and damage 
in plants, even when not visually apparent. Therefore primarily, HSI is 
an investigative tool that allows for the determination of valuable in-
formation about materials through the identification of significant fea-
tures, typically limited to 5–10 bands. After identifying the significant 
investigative plant traits using the complete spectral bands, it is logical 
to select sensors that operate within those significant bands, considering 
the requirements for real-time data acquisition. 

6.2. Hyperspectral platforms 

Current hyperspectral platforms can be classified into two distinct 
categories: those designed exclusively for data collection, and those that 
incorporate actuation tasks in conjunction with data collection. Data 
collection using point scan sensors is typically performed manually and 
with the aid of handheld or backpack devices. Mobile data collection 
platforms are restricted to the use of line scan or snapshot sensors, with 
no studies found utilizing point scan sensors. While no significant dif-
ference in the accuracies of statistical or ML models was observed be-
tween closed systems, using artificial illumination sources and open 
systems that utilize solar irradiance as an illumination source, it should 
be noted that open system platforms are dependent on solar irradiance 
for data collection and no data was reportedly collected during cloudy or 
nighttime conditions. Current platforms that perform actuation tasks 
implement significant dimensionality reduction techniques to achieve 
real-time processing speeds. This is justifiable, as high-dimensional 
spectral data is not required to achieve satisfactory model accuracies. 
In the context of PA, HSI can be used to identify significant bands, 
enabling the development of real-time platforms instead equipped with 
multispectral or CCD sensors with variable filters within the range of 
these significant bands. In cases where spatial and spectral differences 
are minimal, the use of hyperspectral sensors is justified, particularly 
when low-band sensors in the specific wavelength region are unavai-
lable or when a tool is being developed for multiple objects with varying 
spatial and spectral profiles. 

6.3. Machine learning and deep learning 

ML technologies have facilitated the development of classification 
models capable of achieving high accuracy in detecting various plant 
traits. The incorporation of spatial information with spectral data has 
been made possible through DL. Despite their high accuracy, these 
models still rely on data preprocessing and augmentation. While it can 
be argued that DL requires less preprocessing than traditional ML 
models, it necessitates a large dataset, which can be challenging to 
obtain in the case of HSI compared to RGB images. While research on 
training these models is on the rise, it is important to also focus on their 
deployment, which is currently receiving less attention. 

7. Overall observation on real-time application of hyperspectral 
imaging 

HSI has demonstrated superior results in various agricultural appli-
cations discussed in this review. The high dimensionality of hyper-
spectral data allows it to solve problems that are not achievable with 
RGB and multispectral imaging. Specifically, its ability to determine the 
interaction of different objects in a wide wavelength range. This inves-
tigation can help us find dissimilarities between objects of the same 
textural, color, and physical properties, thereby differentiating objects 
based on their chemical composition. For example, differentiating 
among biotypes of the same plant, classifying crops and weeds that look 
similar, and finding defects in fruits that are not visible to the naked eye. 
Some of the significant conclusions obtained from this review are listed 
below:  

1. Dimensionality reduction is a major step, found common in most 
studies. The selection of the most significant bands helps reduce data 
size, remove data redundancy, and help in real-time applications.  

2. The wavelength range of 400–1000 nm is the most common range for 
agricultural applications. Whereas the significant wavelength for 
different applications differs.  

3. The choice of preprocessing steps solely depends on the researcher 
and the models’ accuracy. There is no fixed set of rules for the se-
lection of preprocessing steps. The most common preprocessing steps 
found were image calibration and scatter correction.  

4. Implementation of FPGA and GPUs in the analysis pipeline can 
improve processing speeds. FPGA, due to their ability to build 
custom logic, have been known to have slightly higher speeds when 
compared to GPUs and CPUs. FPGA also allows the implementation 
of data compression logic, giving an overall better performance. The 
implementation of FPGAs is currently lacking in general due to 
limited knowledge, especially in the agricultural community.  

5. DL models compared to ML models allow for a more streamlined 
analysis approach. ML models are highly preprocessing dependent. 
Whereas DL models do not require intense or sometimes perform 
without preprocessing.  

6. Data augmentation is a beneficial approach for the training of DL 
models and increasing the models’ generalization capabilities with 
limited hyperspectral data captured.  

7. System memory exhaustion issues commonly seen with training 
high-resolution hyperspectral images can be solved with distributed 
learning frameworks.  

8. Explanation of biochemical plant traits is usually achieved using 
spectral data exploitation without the need for spatial information. 
This is currently processed with the help of ML models or 1D-CNN 
models. But fused models like 2D-3D CNN have been found to be 
giving increased accuracies recently.  

9. Agricultural research currently developing hyperspectral platforms 
is increasing. This trend is predicted to grow in the coming years as 
technology advances. 

8. Future research directions 

The current research trend in HSI and PA has comprehensively 
demonstrated that a shift towards real-time applications is taking place. 
However, technology and analysis are in the initial stages of develop-
ment, and for this scientific field and related industry to grow more 
research and development is required. Based on this review, some of the 
potential future research directions are: (i) Development of open-source 
software, libraries, and toolboxes for hyperspectral data acquisition. 
Such tools should support UAV- and UGV-mounted sensors compatible 
with embedded systems like the NVIDIA Jetsons or other powerful 
portable platforms. (ii) Development of cost-effective and practical real- 
time hyperspectral data recording platforms is a crucial area for future 
research and development. (iii) Increased research on the applications of 
FPGAs and GPUs in hyperspectral data analysis for PA. More impor-
tantly, FPGAs have not been utilized by the agricultural community as 
thoroughly as CPUs and GPUs. (iv) Deployment of ML and DL models for 
HSI real-time PA applications. Even though many models are trained 
with good accuracy, only a few are currently deployed, and large-scale 
consolidation of models that make the model rugged and applicable to 
several scenarios should be studied. (v) Fabrication and deployment of 
autonomous platforms that use independently developed tools for data 
acquisition, navigation, analysis, and model deployment is another 
critical area of future research. 

9. Conclusions 

A systematic analysis of literature from the past 20 years 
(2003–2023) reveals the significant potential of HSI in PA through real- 
time crop monitoring and analysis. The following systematic literature 
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review methodology revealed a growing trend towards the utilization of 
high spatial resolution hyperspectral sensors in agricultural applica-
tions. Recent research efforts have focused on spectral analysis with the 
development of platforms for data collection, analysis, and actuation 
tasks. Studies have employed ground vehicles, UAVs, and UGVs as 
platforms for both field and laboratory applications. Some researchers 
suggest the potential for real-time applications in the future, and several 
studies have already demonstrated the successful real-time application 
of hyperspectral sensors. Both natural solar in the fields and halogen 
lighting in closed systems are illumination sources used for these plat-
forms. The choice of illumination did not affect model accuracies, but it 
did impact data recording conditions and introduce variability in 
lighting and processing difficulties. 

Only a limited number of open-source software options were avail-
able for data acquisition and analysis, with most studies relying on 
proprietary software. Signal correction was identified as a crucial pre-
processing step while utilizing ML models and statistical analysis. 
Background removal or segmentation techniques were employed to 
spatial-spectral images to isolate pure spectra of different classes. 
Research on data compression for ground hyperspectral sensors is still in 
its early stages, with most work being conducted on satellite hyper-
spectral data. Dimensionality reduction was identified as the most 
common approach to reducing data size, with a trend toward selecting 
10 or fewer bands from the entire spectral range for efficient and real- 
time processing speeds. There is a growing trend toward the utiliza-
tion of GPUs and embedded systems in hyperspectral data analysis. The 
implementation of FPGAs has primarily been limited to airborne or 
satellite sensors, but their use with ground-based sensors is beginning to 
emerge. Only a limited number of ground-based hyperspectral data 
recording platforms, despite numerous advantages, can perform real- 
time analysis, and are primarily restricted to laboratory use. 

Recent research trends have demonstrated the potential of DL algo-
rithms as a powerful tool in comparison to conventional ML techniques, 
as they can alleviate the burden of feature selection and preprocessing to 
some extent. Comparison between DL and ML models using full, and 
subset of spectral dimension did not affect the accuracies. The increasing 
research trend in this field shows more applications begin to employ 3D 
hyperspectral data (with spatial and spectral information) as training 
samples for DL training. Model or spatial transformation-based data 
augmentations have helped alleviate the problem of limited hyper-
spectral data. Distributed training frameworks can help training of high- 
resolution hyperspectral images for DL. Data acquisition, preprocessing, 
and dimensionality reduction methods are significant for real-time ap-
plications. The application of HSI in PA is primarily focused on classi-
fication tasks using ML and DL models. Key research areas of interest 
include the identification of weeds, diseases, and pests, as well as the 
analysis of biochemical and biophysical plant traits. Studies have also 
explored the identification of significant spectral bands for specific ap-
plications, but the findings have not been consistently supported by 
follow-up studies. Overall, the NIR range of 400–1000 nm is widely 
accepted as the most relevant for agricultural applications. 

While most studies have used conventional data acquisition and 
processing with proprietary software, only limited studies explored the 
use of embedded systems, FPGAs, GPUs, and analysis designed specif-
ically for real-time applications. Potential future research areas identi-
fied for the development of HSI in PA include software and cost-effective 
hardware development, FPGAs and GPUs usage, consolidated ML and 
DL models, and the development of autonomous platforms. Overall, this 
review highlights the immense potential of ground-based HSI in PA and 
its future as an investigative tool for real-time crop monitoring and 
analysis. The advancement of HSI technology holds tremendous promise 
for the future of PA and food security. 
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