
Food Control 160 (2024) 110357

Available online 2 February 2024
0956-7135/Published by Elsevier Ltd.

Predicting gypsum tofu quality from soybean seeds using hyperspectral 
imaging and machine learning 

Amanda Malik a, Billy Ram b, Dharanidharan Arumugam c, Zhao Jin a, Xin Sun b,**, Minwei Xu a,* 

a Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA 
b Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, 58108, USA 
c School of Sustainable Engineering and the Built Environment Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA   

A R T I C L E  I N F O   

Keywords: 
Hyperspectral imaging 
Tofu quality 
XGBoost 
Deep neural networks 
Non-destructive inspection 

A B S T R A C T   

Soybean seeds are a key ingredient for producing quality tofu. Conventional methods for assessing soybean seed 
quality for tofu are time-consuming and labor-intensive. This study employs hyperspectral imaging (HSI) and 
machine learning to rapidly predict gypsum tofu quality from soybean seeds. Two hundred soybean seed vari
eties were classified into four categories based on tofu quality using hierarchical clustering. Hyperspectral scans 
of the soybean seeds were captured in the 900–1700 nm range. Using the Extreme Gradient Boost (XGBoost) 
algorithm, ten critical wavelengths were identified that correlate with protein, carbohydrate, and oil contents. A 
Convolutional Neural Network (CNN) model was subsequently developed, trained on HSI data from the soybean 
categories. For new soybean seeds, this CNN model successfully categorized them into distinct quality classes 
with 96–99 % accuracy. Further validation through tofu production demonstrated the model’s robustness in 
predicting key tofu quality parameters like yield, firmness, and springiness. Overall, this pioneering research 
enabled rapid, non-destructive prediction of tofu quality from soybean seeds using HSI and CNN. With further 
refinements, this approach could revolutionize soybean seed quality assessment.   

1. Introduction 

Soybeans are a significant nutritional source worldwide, offering a 
complete protein profile containing all essential amino acids, dietary 
fiber, vitamins, minerals, and essential fatty acids. The beans are utilized 
in various products, including soy sauce, miso, natto, tempeh, sufu, 
kinako, soymilk, tofu, abura-age, and yuba (Fukushima, 1991). Tofu, in 
particular, is a traditional Asian food consumed in East-Asian countries 
for centuries and has gained popularity in Western countries due to the 
rising trend of plant-based food (Ali, Tian, & Wang, 2021). 

Tofu can be chemically described as a protein gel primarily 
composed of water, proteins, fats, and carbohydrates. Tofu production 
involves adding a coagulating agent to soymilk and pressing the 
resulting curd into a block. Two traditional coagulants for tofu are cal
cium sulfate and magnesium chloride, which resulted in gypsum and 
marinated tofu, respectively. In addition to the coagulants, the quality of 
tofu is closely linked to the protein, fat, and carbohydrate content. 
Protein quality influences tofu textures such as hardness, cohesiveness, 
and springiness. Fats and carbohydrates can affect tofu quality through 

their interaction with proteins (Ali et al., 2021). The protein content in 
soymilk relates to water holding and tofu yield, although the protein 
content of soybean seeds does not significantly correlate with tofu yield 
(Lim, Deman, Deman, & Buzzell, 1990). This suggests that protein 
quality, including protein subunit and amino acid composition, impacts 
tofu quality more than the protein content of soybeans (Stanojevic, 
Barac, Pesic, & Vucelic-Radovic, 2011). Take the protein subunits as an 
example, Cai and Chang (1999) found the 11S/7S ratio of protein sub
units is positively related to the firmness of tofu. James and Yang (2014) 
found lack of the 11SA4 subunit would benefit the texture of tofu, while 
Meng, Chang, Gillen, and Zhang (2016) found 11SA3 subunit is an in
dicator for predicting the firmness of tofu. 

Traditional methods for evaluating tofu quality assess yield, texture, 
and sensory attributes (Poysa, Woodrow, & Yu, 2006). However, these 
methods have shortcomings. They are labor-intensive, lack compara
bility due to variations in tofu processing parameters, and take a sub
stantial amount of time, making them unfit for modern, rapid 
production capacities (Kurasch, Hahn, Miersch, Bachteler, & Würschum, 
2018). Therefore, there is an urgent need for a swift, efficient, 
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standardized method for evaluating soybean quality concerning tofu 
products. 

Hyperspectral imaging (HSI) offers a rapid, non-invasive, and cost- 
effective method for non-destructive seed inspection, enabling detailed 
analysis of the chemical composition, moisture content, and internal 
quality without requiring sample preparation or posing safety risks. HSI 
can cover a wide wavelength range from 400 to 15,000 nm, depending 
on the specific camera used. Near-Infrared (NIR) is a related concept, 
representing a specific subset of HSI that focuses on the near-infrared 
region, typically spanning from 900 to 2500 nm (Gao et al., 2021; 
Kandpal, Lee, Kim, Bae, & Cho, 2015; Kucha, Liu, Ngadi, & Claude, 
2021; Medus, Saban, Francés-Víllora, Bataller-Mompeán, & Rosado-
Muñoz, 2021). HSI has been used in various studies to predict seed 
quality and analyze the chemical composition, such as protein, fat, and 
carbohydrate, and functionality of seeds through spectral information. 
Each chemical component has a unique spectral signature that can be 
detected using HSI (Erkinbaev, Henderson, & Paliwal, 2017). Those 
chemical components are considered key factors for determining the 
tofu qualities. Several studies have shown the potential of HSI, espe
cially the NIR region, as a rapid method for the evaluation of seed 
quality. Squeo et al. (2022) developed a method using NIR-HSI 
(900–1700 nm) to perform rapid, accurate, and nondestructive quality 
control of texturized vegetable protein (TVP). This innovative approach, 
a first in this context, combines spectroscopy and imaging to analyze 
TVP’s chemical composition, including proteins, carbohydrates, lipids, 
ashes, and alpha-galactosides. They employed analytical techniques like 
Principal Component Analysis (PCA) and Partial Least Squares Regres
sion (PLSR), achieving high predictive accuracy with models displaying 
R2 values between 0.92 and 0.98. The study concluded that NIR-HSI is 
an effective tool for rapid and precise quality control in TVP production, 
promising streamlined manufacturing and consistent product quality in 
the plant-based meat. da Silva Medeiros et al. (2022) employed portable 
NIR (900–1700 nm) and NIR-HSI (900–2500 nm) to evaluate the quality 
of Brassicas seeds, focusing on oil content, fatty acid composition, and 
species classification. Using advanced chemometric techniques like PCA 
and PLSR, they developed models that effectively differentiated Bras
sicas species, achieving up to 100 % accuracy with NIR-HSI. They 
collected spectral data using a portable NIR spectrometer and a NIR-HSI 
camera, which was pre-processed to correct for light scattering and 
other external influences. The results revealed significant differences in 
the oil content and fatty acid profiles among different Brassicas species. 
The study concluded that NIR-HSI-based models were more effective in 
calibration and prediction than portable NIR models, demonstrating the 
robust potential of NIR-HSI technology for quality control in Brassicas 
seeds. 

Analyzing HSI data is challenging due to its complexity and high 
dimensionality, making it difficult to extract meaningful information 
using traditional statistical methods (Iqbal, Sun, & Allen, 2014). Ma
chine learning, however, can efficiently and accurately analyze 
high-dimensional data by learning patterns and relationships in data 
automatically (Gao et al., 2021). Within the context of hyperspectral 
imaging, machine learning can perform tasks such as classification, 
feature selection, regression, and anomaly detection. The ultimate goal 
of this research is to develop an NIR sensor to non-constructively 
investigate the quality of soybean seeds. The current research devel
oped a machine learning model to predict gypsum tofu quality based on 
HSI data of soybean seeds. The objectives were to classify soybean seeds 
based on corresponding gypsum tofu quality, select featured wave
lengths scanned by HSI, which focus on the wavelength at the NIR range 
(1000–1700 nm), and develop a predictive machine learning model 
using soybean HSI image data and corresponding tofu quality. This 
research has the potential to enhance the efficiency and accuracy of tofu 
quality evaluation, reduce waste and cost, and assist in soybean 
breeding and tofu manufacturing. 

2. Materials and methods 

2.1. Seeds and materials 

Two hundred varieties of soybeans, harvested from North Dakota, 
Missouri, Minnesota, Illinois, and Ohio, were generously provided by 
the Agricultural Utilization Research Institute (Crookston, MN). Calcium 
sulfate was purchased from the local market. 

2.2. Water uptake capacity of soybean seeds 

Two kilograms of soybeans were soaked in 5 kgs of water for 16 h at 
4 ◦C and afterward, the excess water was drained, and the soaked soy
beans were weighed to estimate the water uptake of the beans (Meng 
et al., 2016).  

Water uptake = (WS – WD)/WD                                           Equation (1) 

Where WS (kg) indicates the weight of soaked soybeans and WD (kg) 
indicates the weight of dry soybeans. 

2.3. Preparation of gypsum tofu 

The tofu process was adapted from Meng et al. (2016) with modifi
cations. Briefly, dry soybeans (W0) were soaked following Method 2.2. 
The soaked soybeans were milled into slurries using a grinder hopper 
assembled on the automatic soymilk and tofu machine (Model B003141, 
MASE TOFU MACHINE Co. Ltd, Japan). Ten liters of water were added 
during the grinding procedure. The steam cooking (95 ◦C) began auto
matically and lasted for 5 min. The soymilk exited via the catch pipe, 
while the okara exited through the pressure relief valve. The initially 
collected soymilk was weighed and recorded (W1). In a pan, 11 kg of 
soymilk were weighed to make curd. The soymilk was cooled to 82 ◦C 
and placed in a pan. Then, 35 g of calcium sulfate was evenly dispersed 
in the soymilk. After 12 min, the curds were broken up with an edge 
scraper and whipped. After setting for 1 min, the curds were poured into 
the drain pan with a mesh cloth at the bottom. After 5 min, the curds 
were wrapped with the mesh cloth and moved to the assembled air 
presser with a rectangular plate (20 cm × 40 cm). The initial pressure 
was set at 0.5 MPa for 5 min, while the second pressure was set at 1 MPa 
for 15 min. The prepared tofu was soaked in cool water for 15 min, and 
the final weight (W2) of tofu was recorded. 

The formula for calculating tofu yield is:  

Tofu yield (kg/kg soybean seeds) = W2 × (W1/11)/W0            Equation (2)  

2.4. Evaluation of tofu texture 

The quality of the tofu was analyzed by a Texture analyzer using a 
Stable Micro System, model TA-XT2 (Texture Technologies Corp., White 
Plains, NY, USA). The cylinder-shaped samples (25 mm diameter) were 
obtained by vertically cutting the tofu using a cylindrical cutter with 
triplicates. The samples were pressed twice using a metal disc probe (60 
mm diameter) to simulate a mouth bite. The Texture Analyzer recorded 
the hardness, springiness, and cohesiveness of the tofu (Beléia, 
Prudencio-Ferreira, Yamashita, Sakamoto, & Ito, 2004). 

2.5. Classification of soybean seeds 

An unsupervised pattern recognition technique, hierarchical clus
tering analysis (HCA), was used in order to classify the soybean seeds 
based on the tofu quality. Soybean seeds were classified based on the 
qualities of soybean seeds and tofu, such as seed water uptake rate, tofu 
yield, firmness, springiness, and cohesiveness. The data were stan
dardized and processed with the Ward method. This method provides 
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not only the classification of samples based on the tofu quality but is also 
an important source of knowledge with which to create cross-validation 
groups used in machine learning (Xu, Jin, Lan, Rao, & Chen, 2019). 
Overall, soybean seeds were sorted into four classes based on this 
technology. 

2.6. Hyperspectral scanning of soybean seeds 

A total of 250 soybean seeds were arranged within a transparent 
circular dish. Subsequently, the hyperspectral scanning process was 
conducted thrice for each variety, resulting in the acquisition of images. 
The hyperspectral data were recorded using the camera (Specim FX17, 
Specim, Oulu, Finland). The sensor is a push-broom type that captures 
hyperspectral cube data in the range of 900–1700 nm, with a spectral 
resolution of 8 nm, and can record 224 bands. To record the data, the 
researchers used Specim’s LabScanner 40 × 20 platform, which features 
a halogen light source, a camera mount, and a 400 × 200 mm translation 
sample stage (Fig. S1). To minimize external light interference, the data 
was recorded in a dark room with only the halogen bulbs of the platform 
as the light source. The researchers captured white and dark reference 
calibration images with each image, where the white reference was 
captured using a Teflon bar with >95 % reflectance, and the dark 
reference was captured by closing the sensor shutter. The data recording 
software used was Lumo Scanner. The kernels were placed in a Petri dish 
to minimize the inertia generated by the translation stage. 

To mitigate the effects of illumination changes and dark current in 
the sensor, the researchers calibrated the reflectance of the hyper
spectral image using the formula below: 

R=
I − IB

IW − IB
Equation (3)  

Where R is the hyperspectral image after the reflectance calibration, I is 
the original hyperspectral image, Iw is the white reference hyperspectral 
image of the diffuse reflection whiteboard with 99 % reflectance, and IB 
is the dark reference hyperspectral image when the lens is covered 
(Feng, Makino, Oshita, & García Martín, 2018; He et al., 2022). 

2.7. HSI image processing 

The HSI images were imported into MATLAB 2022a (The Math
Works, Natick, Massachusetts) and stored in a 3-D array. Each pixel 
value was normalized along the band axis. To increase the amount of 
data available for classification, each image was randomly subdivided 
into 64 × 64 sub-pixel images. The selection of the 64 × 64 sub-pixel 
regions was carried out with the requirement that at least 30 % of the 
pixels represented soybean seeds. Data augmentation was performed by 
rotating these images to 90, 180, and 270◦, as well as vertically and 
horizontally flipping the images. After these post-processing steps, a 
total of 25,000 images were generated for each class of soybean seeds. 
The processed images were saved in one document in a CSV format. 

2.8. Feature selection of HSI 

The feature selection method was adapted from (Yang et al., 2021) 
with modifications. 

2.8.1. Data segregation 
After image processing, the dataset (CSV file) was randomly shuffled 

using a uniform distribution to ensure robust cross-validation later in the 
process. The dataset was divided into variables (X) and labels (y). The 
features, stored in X, consisted of columns 1 to 224 from the dataset. The 
labels, stored in y, consisted of column 225, with a subtraction of 1 
applied to adjust for zero-based indexing. The dataset was further split 
into a training set (80 % of data) and a testing set (20 % of data) with a 
random seed of 0 for reproducibility. 

2.8.2. Model training and evaluation 
In this study, three distinct machine learning algorithms were uti

lized: Support Vector Machine (SVM), Extreme Gradient Boost 
(XGBoost), and Random Forest (RF), each chosen due to their unique 
characteristics. The SVM algorithm, configured with a linear kernel and 
a cost parameter set to 1, was selected for its effectiveness in high- 
dimensional spaces, a characteristic that makes it highly suitable for 
our hyperspectral data set. The XGBoost algorithm applied both with all 
available features and with a subset of features selected based on their 
importance scores (>0.008), was chosen due to its robustness to over
fitting and its ability to handle a large number of features, making it 
ideal for feature importance analysis in our study. Finally, the RF al
gorithm, implemented using an ensemble of 250 decision trees, was 
selected for its inherent feature selection mechanism and ability to 
handle non-linear relationships, characteristics that are highly benefi
cial when dealing with complex hyperspectral data (Su et al., 2021). 

The performance of the three algorithms was compared based on 
eight key parameters: calibration accuracy, prediction accuracy, corre
lation coefficients of calibration (rc), correlation coefficients of predic
tion (rp), coefficients of determination of calibration (Rc), coefficients of 
determination of prediction (Rp), root mean square error of calibration 
(RMSEC), and root mean square error of prediction (RMSEP). Following 
the detailed comparative analysis, the most efficient model was selected. 
In this chosen model, the ten most influential wavelengths were iden
tified, and their respective importance scores were recorded. This step 
facilitated a deeper understanding of the spectral characteristics that 
significantly contributed to the performance of our most efficient model. 

2.9. Model establishment using convolutional neural network (CNN) 

CNN is a highly effective feed-forward network. CNN is advanta
geous for handling transformations such as titling, scaling, translation, 
and others. The CNN framework consists of two major components: the 
convolutional layer, which extracts features, and the pooling layer, 
which reduces the input data size. Using a variety of filters, the con
volutional layer can extract the deep features. Using maximum or mean 
combinations, the pooling layer drastically reduces the number of pa
rameters. By combining with one or more fully connected layers, the 
CNN outputs the highly refined features of an image. 

Based on the findings from the feature selection process (as outlined 
in Method 2.8), 5760 64 × 64 × 10 dimensional images were selected to 
train the convolutional neural network (CNN). The network is composed 
of two convolutional layers with 32 and 64 filters each, both having a 2 
× 2 filter size and a stride of 2. These layers were subsequently followed 
by a batch normalization layer, global max pooling, and four fully 
connected layers. The classifier was trained using 30 epochs and a 
randomly selected subset of 80 % of the images. The remaining 20 % of 
images were reserved as a test dataset for evaluating the performance 
model (Lv. Ming, Chen, & Wang, 2019). Ultimately, a predictive ma
chine learning library was developed to facilitate future predictions 
based on this CNN model. The confusion matrix, specificity, precision, 
and sensitivity of this model were listed for understanding the model’s 
performance. 

2.10. External validation of predictive machine learning model 

The external validation of the predictive machine learning library 
was conducted using four untested soybean samples. These samples 
underwent the hyperspectral scanning process as outlined in Method 
2.6 and the image processing procedure detailed in Method 2.7. The 
processed images were subsequently classified by the predictive ma
chine learning library, developed in Method 2.9, into one of the cate
gories defined in Method 2.5. Simultaneously, these four untested 
soybean samples were subjected to the tofu production process 
described in Method 2.3 and the tofu quality evaluation method pre
sented in Method 2.4. The quality of the resulting tofu was then 
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statistically compared to the tofu quality characteristics of the soybean 
category predicted by the machine learning library. 

2.11. Statistical analysis 

The tofu quality analysis was performed in triplicate. The data was 
further subjected to analysis of variance followed by Tukey’s test with 
Statgraphics Plus 5.1 Software (Manugistics, Inc.). Differences at p <
0.05 were considered significant. 

HCA was performed on JMP® Pro 15.0.0 (SAS Institute Inc.). ENVI 
5.3 (ITT Visual Information Solutions, Boulder, UT) was used to 
compute the spectral values of each pixel within the region of interest. 
MATLAB R2022a (The MathWorks, Natick, Massachusetts) was used for 
image processing. A 1D CNN model was constructed utilizing Python 
3.8.3 and Jupyter Notebook. The CPU-based architecture of the 1D CNN 
model was programmed using the well-known deep learning framework 
PyTorch (https://pytorch.org/). 

3. Results and discussion 

3.1. Classification of soybean based on gypsum tofu quality 

Hierarchical clustering analysis (HCA) was utilized to sort tofu 
samples into different classifications. Soybean seeds were divided into 
four classes based on the similarity between each group regarding water 
uptake of soybean, yield, firmness, cohesiveness, and springiness of tofu 
(Fig. 1A). PCA has also demonstrated similar results. The overall vari
ance was explained by Principal Component 1 (PC1) and Principal 
Component 2 (PC2) by 72.5 %, with 52.6 % for PC1 and 19.9 % for PC2, 
respectively (Fig. 1B). Soybean seeds went from negative PC1 to positive 
PC1 following the group Class I, II, III, and IV. Class III and IV could not 

be well separated by PC1 alone; however, it is well separated by PC2. 
Class III was positive in PC2 while Class IV was negative in PC2. With the 
aid of Fig. 1B, it was observed that soybeans in Class I and II exhibited a 
high water-uptake capacity and yielded a high amount of tofu. 
Conversely, soybeans in Class III and IV displayed higher firmness, 
cohesiveness, and springiness of tofu. Overall, Class I soybeans had the 
highest water uptake and tofu yield compared to the other classes. Class 
II had a lower water uptake capacity and tofu yield than Class I, but 
higher than Class III and IV. Additionally, the results indicated a positive 
correlation between tofu yield and the water uptake capacity of soybean 
seeds. It is worth noting that Class III had a higher water-uptake capacity 
than Class IV, but both classes were characterized by higher values of 
tofu texture, such as firmness, cohesiveness, and springiness. The sta
tistical data of Class I, II, III, and IV are listed in Table 1. The maximum 
tofu yield among the four classes was in Class I, about 3.6 kg/kg soybean 
seeds. The highest firmness and cohesiveness were found in Class III, 
which were 5.1 kg force and 0.67, respectively. The springiness had an 
insignificant difference (p > 0.05) in the four classes. 

In chemical terms, tofu is primarily a water gel composed of protein, 
with smaller amounts of fats, carbohydrates, and minerals. Soybean 
protein goes through denaturation, coagulation, and molding to hold 
water and soluble in the protein gel (Chen, Hsieh, & Kuo, 2023). The 
chemical composition of soybean, and processing conditions, are two 
major factors that affect the final quality of tofu. In this research, pro
cessing conditions have been fixed while different soybean varieties 
indicated that different chemical compositions are considered the only 
factors that affect the tofu quality. 

The yield of tofu is intimately tied to the water-uptaking capability of 
the soybean seeds, a characteristic that denotes the ability of soybeans to 
hydrate during tofu production. Soybeans with superior water uptaking 
capabilities generally produce higher tofu yields compared to their less 

Fig. 1. Classification of soybean seeds based on gypsum tofu quality using (A) Hierarchical clustering analysis (HCA) and (B) Principal Component Analysis (PCA) 
and the loading score of each component. The color of Class I, II, III, and IV are indicated with red, yellow, green, and blue, respectively. 
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absorbent counterparts (Ali et al., 2021). This is because a higher water 
uptaking capacity suggests a greater water trapping capacity of the 
soybean protein. Ultimately, this leads to a higher yield of tofu since the 
weight of tofu is a sum of the weight of the solids and the absorbed 
water. Poysa and Woodrow (2002) investigated ten soybean lines grown 
at three locations for two years. They found that a higher water uptaking 
rate of the soybean seeds could result in a higher soymilk yield which 
was positively correlated with tofu yield per kilogram of soybeans. 

Texture characteristics of tofu, including firmness, cohesiveness, and 
springiness, are fundamentally determined by the protein content and 
composition of the soybeans used in its production. Soybeans with a 
higher protein content typically produce tofu with enhanced firmness, 
cohesiveness, and springiness. However, it is noteworthy that as soy
bean seeds hydrate, the protein content becomes diluted, leading to a 
reduction in these texture attributes. This observation underpins the 
“Yield and Texture Trade-off Theory” that while high water uptaking 
capacity could lead to a high water content in the soymilk, resulting in a 
higher yield of tofu, it could simultaneously dilute the protein concen
tration in the soymilk. This dilution potentially diminishes tofu texture 
attributes such as firmness, cohesiveness, and springiness. Supporting 
this notion, Mujoo, Trinh, and Ng (2003) conducted a study on seven 
soybean varieties harvested from Michigan. Their research indicated 
that tofu firmness declined from 10.02 to 7.84 N as tofu yield increased 
from 2.93 to 3.43 kg/kg of soybeans, illustrating the balance between 
tofu yield and its textural attributes. 

Contrarily, Class III soybeans serve as a counterexample to this the
ory, as their higher water-absorption capacity results in lower tofu yield 
and superior tofu texture. This implies that protein content is not the 
sole determinant of tofu quality and yield. Guan et al. (2021)under
scored the influence of protein subunits on tofu yield and quality. To 
illustrate, soybeans with a lower 11S/7S ratio form a uniformly aggre
gated spherical gel, while beans with a higher 11S/7S ratio exhibit 
higher macroscopic phase separation, a coarser network structure, and 
larger pores (James & Yang, 2016). The role of amino acids in influ
encing tofu quality has also been reported. Coagulants such as calcium 
or magnesium salts are commonly used to bind the negatively charged 
amino acids together, forming a network-like structure (Ali et al., 2021; 
James & Yang, 2014). Given this information, it is plausible that the 
protein subunit composition and amino acid profile of Class III soybean 
seeds may vary significantly from those of Class IV. 

In summary, soybean seeds from Class I, II, III, and IV each possess 
unique characteristics that influence the quality of tofu produced from 
them. The categorization of these soybean seeds provided valuable data 
for the application of supervised machine-learning techniques in the 
following research. 

3.2. Hyperspectral images (HSI) of soybean seeds 

3.2.1. Spectra of soybean HSI 
The general trends of the HSI curves within the 900–1700 nm 

wavelength range were found to be quite similar (Fig. 2A). However, the 
peak intensity of each soybean seed varied, ranging from 40 to 120. To 
better understand the relationship between the HSI data and tofu 
quality, the spectra were averaged and grouped into the four previously 
established classes of soybeans using HCA (Fig. 2B). The intensity of the 
HSI spectra followed an overall order of Class I > II > III > IV, corre
sponding to the quality of tofu produced. These findings suggest that a 
predictive model could be established based on the HSI data and related 
parameters of tofu quality. However, with 224 wavelengths for each HSI 
curve, the dataset can be large, leading to potential computational 
complexity and noise in the predictive model. As such, the following 
methods will explore ways to reduce the number of wavelengths in the 
dataset. 

Moreover, these observations imply that a predictive model could be 
built based on the HSI data and related parameters of tofu quality. 
However, as each HSI curve has 224 wavelengths, the dataset can be 
substantial, leading to potential computational complexity and noise in 
the predictive model (Loggenberg & Poona, 2020; Pal, Charan, & Poriya, 
2021; Warner & Shank, 1997). 

3.2.2. Selection of featured wavelengths 
The HSI commonly includes highly correlated neighboring bands, 

causing problems of multicollinearity among closely positioned wave
length variables. To address this, featured wavelength selection is used 
to decrease data dimensionality and conserve storage space while pre
serving essential information. This strategy lessens collinearity issues, 
strengthens model resilience by reducing wavelength count, and 
potentially enhances model performance in accuracy and 
generalization. 

Support Vector Machine (SVM), Extreme Gradient Boost (XGBoost), 
and Random Forest (RF) were widely applied in searching for the 
featured wavelength of HSI (Huang et al., 2022; Pal et al., 2021). Sup
port Vector Machine (SVM) is capable of handling high-dimensional 
data effectively. This is particularly important in HSI where the num
ber of features (wavelengths) can be very large. By using a linear kernel, 
the SVM is looking for a linear combination of featured wavelengths that 
best separates the classes. This makes the interpretation of the model 
simpler, as the weight given to each wavelength in the final model 
represents its importance (Huang, Zhou, Meng, Wu, & He, 2017). 
XGBoost introduces a regularization term on the basis of the gradient 
boosting algorithm, utilizes the second-order Taylor expansion for 
fitting residuals, and can be calculated in parallel, so it has the advan
tages of anti-overfitting and high computational efficiency (Liao, Cao, Li, 
& Kang, 2019). RF is a robust, scalable, and flexible algorithm that can 
handle complex and noisy data, identify the most informative bands, 
capture non-linear relationships, and reduce overfitting in HSI analysis 
(Qin, Wang, Li, & Sam Ge, 2013). 

In this study, both the XGBoost and RF algorithms showcased high 
calibration accuracy, exceeding 99 %, as represented in Table 2. How
ever, the SVM algorithm exhibited a significantly lower calibration ac
curacy of just 53.8 %. Regarding prediction accuracy, despite its 
commendable performance, RF achieved a comparatively lower pre
diction accuracy of 56.4 %, suggesting that the featured wavelengths 
selected by this method had limited predictive power. The XGBoost al
gorithm stood out with a good prediction accuracy of 99.5 %, under
scoring its superior capability in this context. These findings align with a 

Table 1 
Evaluation of gypsum tofu and soybean seed quality across various soybean 
classes.   

Class Min Max Mean 

Water uptake (kg/kg soybean) I 1.21 1.34 1.27 ± 0.05 b 
II 1.23 1.34 1.28 ± 0.03 b 
III 1.24 1.33 1.28 ± 0.03 b 
IV 1.16 1.26 1.21 ± 0.03 a 

Tofu yield (kg/kg soybean) I 2.98 3.98 3.59 ± 0.31 c 
II 2.76 3.5 3.10 ± 0.21 b 
III 2.06 3.11 2.50 ± 0.23 a 
IV 1.87 3.26 2.62 ± 0.37 a 

Firmness (g force) I 1357 2246 1959 ± 292 a 
II 2255 3904 3082 ± 460 b 
III 3539 7189 5092 ± 1079 d 
IV 2627 6998 4483 ± 1012 c 

Springiness I 0.93 0.98 0.96 ± 0.01 a 
II 0.96 0.98 0.97 ± 0.01 a 
III 0.95 1.00 0.97 ± 0.01 a 
IV 0.94 0.98 0.97 ± 0.01 a 

Cohesiveness I 0.4 0.58 0.50 ± 0.04 a 
II 0.54 0.68 0.61 ± 0.04 b 
III 0.56 0.75 0.67 ± 0.05 d 
IV 0.51 0.77 0.64 ± 0.05 c 

The sample number of classes I, II, III, IV is 40, 54, 50, and 56, respectively. 
Different letters indicate statistically significant differences (p < 0.05) by 
Tukey’s test. 
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similar study by Pal et al. (2021) that also reported the superior per
formance of the XGBoost algorithm for feature selection in their data
sets, while the RF-based approach caused a drop in classification 
accuracy. Upon delving deeper into the XGBoost parameters, we found 
that the correlation coefficients of prediction (rp) and coefficients of 
determination of prediction (Rp) were 85.5 % and 76.3 % respectively. 
Consequently, given its remarkable prediction accuracy of 99.5 %, 
XGBoost was chosen as the optimal algorithm for selecting the featured 
wavelengths in this study. 

In order to enhance model performance by reducing complexity and 
also offer insights into the most significant spectral bands for predicting 
tofu quality, wavelengths with importance scores above a defined 
threshold (as 0.008) are selected (Fig. 2C) in the XGBoost. The important 
score for each wavelength is calculated based on how much it improves 
the model’s accuracy, typically measured by the decrease in impurity or 
error in the decision trees. Finally, ten featured wavelengths from 
XGBoost were 935.62, 939.08, 1157.93, 1287.51, 1301.50, 1312.11, 
1319.14, 1673.72, 1716.65, and 1720.23 nm, respectively (Fig. 2C). 

Fig. 2. Hyperspectral imaging (HSI) profile of soybean seeds at the spectral range spanned from 900 to 1700 nm. (A) The HSI wavelength profile of all the soybeans; 
(B) The HSI wavelength profile of classified soybeans; (C) Images of soybeans at ten featured wavelengths. The 10 featured wavelengths represented by the image 
planes were acquired by XGBoost with the feature importance listed. 

Table 2 
Performance of featured wavelength selected by different models.  

Model Calibration accuracy rC RC RMSEC Prediction accuracy rP RP RMSEP 

XGBoost 0.997 0.998 0.995 0.077 0.995 0.855 0.763 0.544 
RF 1.000 1.000 1.000 0.000 0.564 − 0.090 − 0.090 1.163 
SVM 0.538 0.135 0.135 1.037 0.534 0.122 0.122 1.049 

Abbreviations: Support Vector Machine (SVM), Extreme Gradient Boost (XGBoost), and Random Forest (RF), correlation coefficients of calibration (rc), correlation 
coefficients of prediction (rp), coefficients of determination of calibration (Rc), coefficients of determination of prediction (Rp), root mean square error of calibration 
(RMSEC), and root mean square error of prediction (RMSEP). 
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It is known that the near-infrared spectra (900–2500 nm) of soybean 
seeds mainly provide chemical information about the components such 
as protein, oil, and water with the bands of O–H, N–H, and C–H groups 
(Ribera-Fonseca, Noferini, Jorquera-Fontena, & Rombolà, 2016; Sun 
et al., 2020; Teye, Anyidoho, Agbemafle, Sam-Amoah, & Elliott, 2020). 
The difference in the reflectance is due to the variation in the content 
and structure of protein, and oil, reflecting different varieties of soybean 
seeds moreover, it is also due to the physical properties of the light when 
interacting with matter such as light scattering effects. Soybean seeds 
contain a lot of proteins, oils, and carbohydrates, but the chemical 
composition varies largely by the method of cultivation, temperature, 
sun, and rainfall (Song et al., 2016). 

The water content is a critical factor in determining tofu quality, 
influencing both yield and firmness. Curran (1989) identified 1287.51 
nm as a key wavelength associated with water content. Additionally, 
Barbin et al. (2015) and Santagapita, Tylewicz, Panarese, Rocculi, and 
Dalla Rosa (2016) noted that the first overtone of water corresponds to 
approximately 1450 nm. This wavelength is particularly notable in our 
study: as Fig. 2B illustrates, 1450 nm could differentiate between the 
four classes of soybean seeds. However, it’s important to note that this 
wavelength does not rank among the top ten in terms of importance, as 
shown in Fig. 2C. This discrepancy highlights the complexity of the 
relationship between specific wavelengths and chemical compositions in 
soybean seeds, and warrants further investigation in our ongoing 
research. 

According to Table 3, there were several compounds observed using 
the ten selected featured wavelengths like oil (935.62 nm, 939.08 nm), 
proteins (1157.93 nm, 1673.72 nm, 1716.65 nm, 1720.23 nm), cellulose 
(1287.51 nm), and lignin (1287.51 nm, 1673.72 nm, 1716.65 nm, 
1720.23 nm) (Curran, 1989). Those results covered the major three 
chemical components, including protein, oil, and carbohydrates, in the 
featured wavelengths. Another research suggested that absorption at 
1187 nm (-CH), 1496 nm (-NH), 1674 nm (-CH), 1743 nm (-CH), 1980 
nm (-NH), 2055 nm (-ROH/NH), and 2167 nm (-NH) increased as the 
protein content increased (Ingle et al., 2016). Therefore, the ten featured 
wavelengths were good indicators of the protein quality of soybean 
seeds. Barbin, Sobottka, Risso, Zucareli, and Hirooka (2016) employed 
preprocessing techniques such as the first derivative, second derivative, 
Multiplicative Scatter Correction (MSC), and Standard Normal Variate 
(SNV) in conjunction with Partial Least Squares (PLS) regression models. 
This approach was effectively used for predicting various maize grain 
attributes, including protein content, water activity, moisture, and ash 
content. Adopting similar preprocessing methods could enhance our 
model’s performance in future research endeavors. Specifically, these 
techniques might aid in elucidating the intricate relationship between 
wavelengths and chemical compositions, thereby refining our predictive 
accuracy regarding gypsum tofu quality from soybean seeds. 

3.3. Predicting gypsum tofu quality based on HSI with CNN model 

3.3.1. Establishment of CNN model 
Spectral data is rich in complex features, making it an ideal candidate 

for analysis using CNN. These models, characterized by their extensive 
architectures, offer advantages over traditional classifiers by extracting 

more abstract data features, leading to heightened performance levels. 
Although the training time for Convolutional Neural Networks (CNN) 
tends to be longer compared to other models, the trade-off is a superior 
performance, particularly in image classification tasks, where CNNs are 
considered one of the most effective algorithms (Zhou, Zhang, Liu, Qiu, 
& He, 2019). 

In this study, CNN was employed to develop a model based on ten 
selected spectral bands of interest. The essential parameters of this 
model are outlined in Table S1. A predictive model was established 
using the developed algorithm, which was subsequently verified by 
inputting random soybean seed images and evaluating the accuracy of 
its class predictions. 

For this assessment, the confusion matrix (Fig. 3) was performed to 
evaluate the model performance. The diagonal cells of the matrix 
represent the number of correct predictions for each class. The values 
(293, 280, 282, 292) indicate high accuracy across all classes, suggesting 
that the CNN model has a strong ability to distinguish between the 
different quality classes of tofu. There are very few off-diagonal ele
ments with non-zero values, indicating that misclassifications are min
imal. This is evidenced by the presence of only a single ‘5′ in the bottom 
row, indicating that only five instances of class 3 were incorrectly 
classified as class 2. 

The model’s specificity, precision, and sensitivity scores of 0.9986, 
0.9956, and 0.9958, respectively, indicate outstanding performance in 
correctly classifying the quality of soybean seeds for tofu production 
(Fig. 3). The high specificity suggests the model was exceptionally 
effective at identifying seeds that will not yield high-quality tofu, 
minimizing potential waste of resources on inferior seeds. The precision 
indicates that when the model predicts a seed will produce high-quality 
tofu, it is correct nearly all the time, which is crucial for maintaining the 
consistency of the tofu’s quality. Sensitivity, or the model’s ability to 
correctly identify high-quality seeds, ensures that superior seeds are 
seldom missed, maximizing the potential yield of quality tofu products. 
Together, these metrics underscore the robustness and reliability of the 
model in a practical quality control setting, balancing the need to avoid 
false positives (poor-quality seeds wrongly classified as high-quality) 
with the need to correctly identify as many high-quality seeds as 
possible. 

In addition to the confusion matrix, one hundred images were uti
lized from each class to determine the prediction percentages. As indi
cated in Table S2, Class I achieved a 98 % prediction rate, Class II had a 

Table 3 
Featured wavelengths and the corresponding bonds.  

Wavelength (nm) Bond Vibration Chemicals 

935.61 C–H Stretch Oil 
939.06 C–H Stretch Oil 
1157.93 N–H Stretch Protein 
1287.51 O–H Bend, 1st Overtone Water, Cellulose, Lignin 
1673.72 C–H Stretch, 1st Overtone Protein, Lignin, Nitrogen 
1716.65 C–H Stretch, 1st Overtone Protein, Lignin, Nitrogen 
1720.23 C–H Stretch, 1st Overtone Protein, Lignin, Nitrogen 

The data is cited from (Curran, 1989). 

Fig. 3. Confusion matrix of the CNN model, where the numbers 0, 1, 2, and 3 
on the axes correspond to Classes I, II, III, and IV, respectively. The model 
demonstrated high specificity, precision, and sensitivity, with respective values 
of 0.9986, 0.9956, and 0.9958. 
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99 % prediction rate, and Class III also had a 99 % prediction rate, while 
Class IV only attained a 96 % prediction rate. These high prediction rates 
serve as a testament to the testing accuracy of the model, demonstrating 
its efficacy and robustness in predicting soybean seed classifications. 

While there have been no reported applications of CNN in predicting 
food processes, there is a growing body of research leveraging CNN for 
food quality and safety prediction. For instance, Yu, Tang, Wu, and Lu 
(2018) employed a deep learning model to analyze visible/near-infrared 
hyperspectral data from shrimps, aiming to predict their freshness. They 
used a Stacked Autoencoder (SAE) model to extract deep features from 
the samples, and then applied logistic regression to classify the freshness 
grade of shrimp based on these features. This novel approach yielded 
impressive results, with calibration and prediction set accuracies 
reaching 96.55 % and 93.97 % respectively, demonstrating the potential 
of deep learning methods in food quality assessment. Similar applica
tions can be found in an illustrative study on the use of CNNs for HSI 
analysis. Qiu et al. (2018) explored the potential of CNNs to identify rice 
seed varieties. Significantly, the CNN model outperformed the SVM 
model in most scenarios, with an impressive total accuracy rate of 89.6 
%, showcasing the effectiveness of CNNs in analyzing spectral data. Our 
research demonstrates the promising application of CNNs in hyper
spectral imaging for food product prediction, especially in predicting the 
tofu quality based on soybean seeds. The findings suggest that the aid of 
rapid sample collection through CNNs and HSI is a good combination to 
predict food quality based on the ingredients profile. 

3.3.2. Verification of CNN model 
Four untested soybean seeds were employed to evaluate the quality 

of soybean seeds scanned with HSI. The resulting images were processed 
and fed into the CNN model, which classified the seeds into Class I, II, III, 
and IV. Tofu made from these soybeans was evaluated for quality using 
Methods 2.4, and the results were presented in Fig. 4. In general, the 
CNN model accurately predicted the quality of soybeans in Class II and 
Class III, and most parameters for Class I and Class IV were also well 
predicted. Nonetheless, there are certain limitations to these results. 
Specifically, each quality parameter of tofu made from Class II soybeans 

fell within the interquartile range (IQR), while those of Class III tofu 
were situated between the lower and upper whiskers. These results are 
considered acceptable because the predicted tofu quality remains within 
the range of the training dataset. 

Although most quality parameters for Class I and Class IV also fell 
within the whisker range, there were outliers in the predicted results. 
The springiness of tofu (Fig. 4D) made with predicted Class IV soybeans 
was lower than the lower whisker, which can be considered an outlier; 
this may be attributed to the presence of outliers in the training dataset 
itself. Conversely, the firmness of Class I tofu (Fig. 4C) was higher than 
the upper whisker, indicating a model prediction outlier. The statistical 
significance of the outliers in our model’s predictions is an important 
consideration for interpreting its accuracy. Determining whether these 
outliers are indicative of a systematic error or simply reflect the natural 
variability in soybean quality is essential for assessing the model’s 
performance. The presence of outliers could potentially highlight areas 
where the model might benefit from refined calibration, especially if 
they stem from predictable biases within the training data. By under
standing the characteristics of these outliers, we can better gauge the 
model’s reliability and ensure its predictions are robust and consistent 
with the empirical quality attributes of tofu. In addition to these outliers, 
some predicted parameters were close to the whiskers, such as the water 
uptake capacity of Class I and Class III, and the tofu yield of Class IV. 
These results may be due to the bimodal distribution of the training 
dataset, as illustrated in Fig. 4A&B (Scheres, 2010; P. Xu et al., 2022). 

Classifying soybeans into more categories using the training dataset 
might help reduce outliers and the bimodal distribution. However, 
increasing the number of categories may lead to fewer samples per 
category, potentially causing issues such as overfitting, high variance, or 
inappropriate model selection (Scheres, 2010). The optimal solution 
would be to collect additional data to enhance the performance of the 
machine learning model. 

4. Conclusions 

This study successfully determined ten featured wavelengths from 

Fig. 4. Verification of soybean seeds with tofu quality (A) Tofu yield, (B) Water uptaking capacity, (C) Firmness, (D) Springiness, and (E) Cohesiveness. The circle 
symbol indicates the mean value of tested tofu quality. The line of each box from top to bottom indicates upper whisker, upper quartile, median, lower quartile, and 
lower whisker. The black dots indicate the parameter values in the training dataset. Different letters indicate statistically significant differences (p < 0.05). 
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Hyperspectral Imaging (HSI) data, spanning 200 soybean varieties, with 
the help of the XGBoost algorithm. These wavelengths potentially 
correlate with the protein, carbohydrate, and oil contents in the soybean 
seeds. However, further validation is needed to substantiate the rela
tionship between these wavelengths and the respective chemical 
compositions. 

A CNN model for predicting gypsum tofu quality has been success
fully developed based on these ten featured wavelengths from the HSI 
data. This model, trained on data from 200 soybean varieties, is capable 
of classifying soybeans into four distinct classes using HSI images of 
individual seeds. The predictive accuracy for each class of soybeans 
impressively ranges from 96 % to 99 %. 

The robustness of this model was further validated using untested 
soybean samples. These samples were accurately categorized into 
distinct classes, each representing a specific range of tofu quality pa
rameters. Upon comparison, it was observed that the model accurately 
predicted the majority of tofu quality traits. 

This research sets the groundwork for understanding the relationship 
between hyperspectral image, chemical composition, and tofu qualities. 
The feasibility of predicting tofu quality based on the hyperspectral 
image has been demonstrated; however, the machine learning predic
tion model requires further enhancements. It is recommended to collect 
more soybean samples to classify seeds into additional categories. This 
would equip the prediction model with a more comprehensive ability to 
accurately estimate tofu quality based on a diverse set of quality pa
rameters. Our future research will delve deeper into understanding why 
HSI can predict tofu quality and identify the critical components of 
soybean seeds for tofu processing. 
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