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A B S T R A C T   

Deep Learning (DL) has been described as one of the key subfields of Artificial Intelligence (AI) that is trans-
forming weed detection for site-specific weed management (SSWM). In the last demi-decade, DL techniques have 
been integrated with ground as well as aerial-based technologies to identify weeds in still image context and real- 
time setting. After observing the current research trend in DL-based weed detection, techniques are advancing by 
assisting precision weeding technologies to make smart decisions. Therefore, the objective of this paper was to 
present a systematic review study that involves DL-based weed detection techniques and technologies available 
for SSWM. To accomplish this study, a comprehensive literature survey was performed that consists of 60 closest 
technical papers on DL-based weed detection. The key findings are summarized as follows, a) transfer learning 
approach is a widely adopted technique to address weed detection in majority of research work, b) less focus 
navigated towards custom designed neural networks for weed detection task, c) based on the pretrained models 
deployed on test dataset, no one specific model can be attributed to have achieved high accuracy on multiple 
field images pertaining to several research studies, d) inferencing DL models on resource-constrained edge de-
vices with limited number of dataset is lagging, e) different versions of YOLO (mostly v3) is a widely adopted 
model for detecting weeds in real-time scenario, f) SegNet and U-Net models have been deployed to accomplish 
semantic segmentation task in multispectral aerial imagery, g) less number of open-source weed image dataset 
acquired using drones, h) lack of research in exploring optimization and generalization techniques for weed 
identification in aerial images, i) research in exploring ways to design models that consume less training hours, 
low-power consumption and less parameters during training or inferencing, and j) slow-moving advances in 
optimizing models based on domain adaptation approach. In conclusion, this review will help researchers, DL 
experts, weed scientists, farmers, and technology extension specialist to gain updates in the area of DL techniques 
and technologies available for SSWM.   

1. Introduction 

The rise of deep learning (DL), a subfield of machine learning (ML) 
and artificial intelligence (AI), is a giant leap towards revolutionizing 
automation in precision agriculture (Albanese et al., 2021; Yang and Xu, 
2021; Jiang and Li, 2020). Years ago, no one would have imagined that 
one day unmanned ground robots and unmanned aerial systems (UASs) 
could be enabled to monitor crop plants and eliminate weeds, a task that 
was usually performed by humans. DL has contributed significantly in 
precision agriculture domains involving, disease detection (Chowdhury 
et al., 2021; Liu and Wang, 2021), crop plant detection and counting 
(David et al., 2021; Rai and Flores, 2021), crop row detection (Bah et al., 

2019; Pang et al., 2020), crop stress detection (Gao et al., 2020b; Butte 
et al., 2021), fruit detection and freshness grading (Ismail and Malik, 
2021; Sa et al., 2016), fruit harvesting (Onishi et al., 2019), and site- 
specific weed management (SSWM) (Fernández-Quintanilla et al., 
2018; Liu et al., 2021). 

SSWM is a procedure that requires varying weed management 
practices adjusted according to weed location, density, and population 
(Wiles, 2009). These practices are accomplished using variable rate 
technology (VRT) that sprays herbicide in real-time as decided by the 
central brain of the machine, the vision-based image processing algo-
rithm. Currently, there are two types of VRT-based applications, 1) map- 
based, and 2) sensor-based. Map-based is a common approach in which 
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the map of an area is generated based on the georeferenced samples of 
soil or plants. Since this process involves manual soil sample collection 
for further analysis, therefore it is an expensive and time-taking process 
(Lima and Mendes, 2020). However, sensor-based mapping is a faster 
process that involves data collection and processing on-the go. All the 
processing is accomplished in real-time by leveraging the application of 
ML or DL techniques during in-field motion of ground or aerial 
technologies. 

Prior to 2015, traditional image processing and conventional ML 
algorithms were deployed on digital images acquired using ground ro-
bots (Ahmed et al., 2012; Guerrero et al., 2012; van Evert et al., 2011). 
Amongst traditional image processing techniques, analyzing and 
extracting morphological features and textural characteristics of weed 
species was a widely adopted approach in identifying weeds amongst 
crop plants. Morphological features were based on shape measurements 
and shape descriptors such as, area, diameter, perimeter, and convexity 
(Herrera et al., 2014; Mursalin and Mesbah-Ul-Awal, 2014). Whereas 
textural characteristics were defined as the arrangement of gray level 
pixels in a specified area of a digital image. These characteristics were 
estimated based on the statistical and structural features defined using 
regularity, roughness, closeness, uniformity, or entropy (Prema and 
Murugan, 2016). As the techniques advanced, researchers designed or 
modeled a classifier that was trained on the aforementioned features. 
These classifiers were called as ML-based classifiers. Prominent ML 
classifiers such as, Random Forest (RF), Support Vector Machine (SVM) 
and naïve Bayes, were trained on a small sample-size images to classify 
weeds from crop plants. Due to limited number of training images fed for 
training purpose, these classifiers were limited in achieving robustness 
and stability in a highly complex environment that included, shadows, 
occlusion, look-alike weeds, unknown objects, and image distortion due 
to motion blur. Additionally, only a small number of research studies 
could deploy ML-based classifiers for real-time weed management. This 
was mostly due to the incapability of these classifiers to localize the 
presence of weeds which was later addressed by DL algorithms, the 
bounding boxes. 

Integrating DL techniques enhances the advanced algorithms to 
classify weeds from crop plants in real-time. This is a crucial step as in- 
field weeding machines decide their spraying pattern based on these 
algorithms. But, developing such algorithms is a challenging task when 
it comes to classifying similar weed species that share similar color or 
shape properties as a crop plants in early growth stages. Furthermore, 
weed classification becomes more challenging in an extensive and 
complex background with a wide field of view (Olsen et al., 2019). 
Although several researchers have tackled this problem (Huang et al., 
2018; Yu et al., 2019a; Olsen et al., 2019), fine-tuning these algorithms 
for scalability and generalization in multiple field scenarios needs 
tremendous research efforts. Further, any levels of success made in DL- 
based algorithms will enable SSWM technologies to efficiently classify 
multiple weed species followed by proper weed control actions. 

The term “deep” in deep learning refers to the presence of hundreds 
of successive layers of representations of the input data. These repre-
sentations (also called data encoding) are defined as the description that 
captures the underlying information of an image. In a deep neural 
network, this information is transformed and made more specific in a 
hierarchy (LeCun et al., 1989). The neural networks (NNs) in DL 
transforms the digital image into hierarchical levels of representations 
with each hierarchy carrying more specific information about the image 
than the previous ones. This is what typically makes DL special and 
better than conventional ML techniques. ML (or shallow learning), on 
the other hand, tends to use only one or two layers of representations of 
the input data that is manually engineered, called, feature engineering. 
Additionally, to select the best features, domain expertise is required to 
transform raw images into a suitable feature vector for a classifier to 
classify images. DL or layered representation learning uses a very 
complex network structure that automates the process of learning all the 
features from an input image. Unlike ML, DL automatically extracts local 

as well as global features from these layers of representations jointly 
rather than in succession (Chollet, 2017). 

DL has paved its way for public attention and industrial research for 
SSWM in precision agriculture. The key reason why industries and 
university researchers are adopting this approach is because DL has the 
ability to sift through unstructured and large-scale data. This data is 
usually in the form of audios, videos and images where the DL algorithm 
tends to perform classification and detection tasks on similar distribu-
tion (Serre, 2019). Plethora of open-source application programming 
interfaces, such as, Keras (Chollet et al., 2015), TensorFlow (Abadi et al., 
2016), and PyTorch (Paszke et al., 2019), could be credited to train a DL 
model in few hours depending on the size of the data with adequate 
computational power. Additionally, the computational bearing of palm- 
sized microprocessors have also increased multiple times dividing the 
processing tasks parallelly across powerful graphical processing units 
(GPUs), tensor processing units (TPUs), and existing central processing 
units (Jeon et al., 2021). 

Apart from highlighting DL-based advancements for SSWM, this re-
view also highlights a trend by describing a paradigm shift from ground- 
based to aerial-based technologies for SSWM. Therefore, to enumerate 
better, the outline of this paper is described in the figure (Fig. 1). The 
rest of the paper is organized as follows: section 2 outlines the materials 
and methods that explains the process behind performing a systematic 
literature review; section 3 provides the results and discussions of the 
analysis done during the literature survey. Within this section, the broad 
topic of SSWM is divided into two sections, proximal and remote 
sensing-based weed detection. Section 3.2, proximal sensing, is sub-
divided into two categories, application of DL techniques to classify 
weeds in still image context and unmanned weeding robots (UWRs) for 
in-field weed detection. Similarly, section 3.3 highlights remote sensing- 
based weed identification and is sub-categorized into orthomosaic im-
agery processing and spray drones for spot spraying applications. Sec-
tion 4 presents the future directions for deploying novel techniques for 
weed detection using DL. Finally, section 5 concludes the paper with key 
findings, research gaps, and contributions. Collectively, the objectives of 
this review study are to:  

a. Provide a brief survey of precision weeding technologies (including 
sensors/cameras) that uses DL to classify weeds in still image as well 
as real-time setting;  

b. Report DL models and current techniques that are employed for 
weed detection;  

c. Illuminate the ongoing research trend in aerial-based weed 
detection;  

d. Present limitations of DL pertaining to each sensing categories; and,  
e. Navigate future directions to implement novel techniques for weed 

identification using DL. 

2. Materials and methods 

2.1. Systematic search for technical papers on weed detection using DL 
techniques 

An organized literature search was performed by selecting three 
academic databases, namely, Science Direct, Web of Science, and Agri-
cola (Table 1). Specific keywords within the advanced search section of 
the database repositories were used that would result in the number of 
retrieved articles. The search keywords used were; [(“Weed detection”) 
AND (“Deep learning”)], using the Boolean operator, AND. To extract 
relevant articles from the retrieved ones, the abstract of all the retrieved 
articles was read so that the subject matter was in coherence with the 
title of this paper. Additionally, screening criteria, such as, duplicate 
papers, and non-English papers were applied to the selected database for 
a confined and high-quality paper selection. Finally, a graph was plotted 
(Fig. 2) that describes the number of published technical articles on DL 
for weed detection in the last decade (2011–2021). 
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Main motivation to write this review article was to provide a detail 
answer to the question; how is deep learning enabling precision weeding 
technologies to address site-specific weed management in the 21st 
century? To address this question, 60 articles were reviewed (Table 2) 
that can be sub-categorized as follows:   

a. Sensors and DL techniques available for collecting and addressing 
weed detection on still images.  

b. DL-based UWRs for in-field (real-time) weeding operations.  
c. Integrated application of UASs acquired imagery and DL for weed 

mapping or weed detection.  
d. Emerging spray drones and research on aerial-based weed detection 

for spot spraying application. 

3. Results and discussion 

3.1. Analyzing the trend of published technical papers on weed detection 

As mentioned in the previous section 2.1., a graph was plotted to 
visualize a trend in published technical articles for weed detection 

Fig. 1. Review paper layout flowchart.  

Fig. 2. The trend in published technical articles on weed detection using DL (2011 – 2021).  

Table 1 
Academic databases to extract relevant articles on weed detection using DL.  

S. No Database Retrieved articles* Relevant articles¥  

Science Direct 98 23  
Web of Science 71 28  
Agricola 72 9 

Note: *Search year = 2021 – 2011; ¥Relevant articles extracted from the 
retrieved ones after applying the screening criterion. 
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(Fig. 2). According to Table 1, out of 98 retrieved articles in Science 
Direct, 71 in Web of Science, and 72 in Agricola databases, the number 
of relevant articles were 23, 25, and 6, respectively. During the search 
analysis, 12 papers within the Web of Science database was found to be 
in common with the Science Direct database, therefore, it was removed 
as per the duplicate paper criteria. Furthermore, the number of papers 
reported in Agricola were less because most of the papers were found 
duplicate within the two other database. Based on the graph (Fig. 1), 
highest number of publications is reported in Web of Science in 2021 (12 
papers, Fig. 1). Similar observation can be seen in Science Direct data-
base as well. The trend (vertical black dot-dash) signifies that a greater 
number of technical articles on weed detection using DL techniques 
were published after 2017. Therefore, this indicates that it was only after 
2017 that the potential of DL was realized in identifying weeds amongst 
crop plants. 

3.2. Proximal sensing-based weed detection 

The word “proximal” originates from a Latin term Proximus, mean-
ing, nearest or next. Proximal sensing refers to the use of sensors that are 
employed close to an object. These sensors generally take time for image 
acquisition as they are scanned through an object delivering information 
in multiple bands. After image acquisition step, the output is processed 
for human interpretation either on high-end computers or edge plat-
forms using DL techniques. This section discusses about different image 
acquisition technologies as well as DL techniques used for weed detec-
tion either on still images or real-time in-field conditions. 

3.2.1. Proximal sensors for weed image acquisition 
In the past years, forefront cameras and/or sensors for weed image 

acquisition have been, (1) RGB (Jiang et al., 2020; Hung et al., 2014), 
(2) multispectral for weed mapping (Louargant et al., 2017; Pantazi 
et al., 2017), and (3) hyperspectral for spectral-based analysis (Li et al., 
2021). Out of all the three categories of sensors, the application of 
multispectral and hyperspectral sensor has been explored mostly in 
remote sensing and proximal sensing, respectively. On the other hand, 
RGB sensors have been used in proximal and remote sensing due to 
economic reasons. Various ground-based technologies have been 
equipped with RGB sensor to acquire field images of weeds and crop 
plants (Laursen et al., 2017; Kounalakis et al., 2018; Rasti et al., 2019). 
Whereas, in other research work, hand-held cameras (Ahmad et al., 
2021; Pathak, 2021; Tang et al., 2017), mobile phone (Pearlstein et al., 
2016), light detection and ranging sensor (LiDAR) (Shahbazi et al., 
2021), depth camera (Andújar et al., 2016), and ultrasonic sensor 
(Andújar et al., 2012) have also been used to acquire images of weeds 
and crop plants. Different types of image acquisition technologies are 
shown in the figure (Fig. 3). Acquired images from these sensors are 
processed on high-end computers to perform weed-to-crop 
classification. 

3.2.1.1. DL techniques to identify weeds in still image context 
3.2.1.1.1. RGB images. Typically, the application of DL techniques 

for weed detection varies according to the sensor type. Initially, DL al-
gorithms were developed to be implemented on RGB images (Mahony 
et al., 2019). But, to spread its application across a variety of sensing 
technologies, these algorithms were further tuned to classify weeds in 
images with depth (RGB-D), hyperspectral (section 3.2.1.1.2), and 
multispectral sensors (3.3.1.2) as well. For example, Faster R-CNN and 
VGG-16 architectures were used as a backbone model to train RGB-D 
images for weed identification in a wheat field (Xu et al., 2021a). 

Wide use of DL techniques has been adopted on RGB images because 
DL has the ability to sift through enormous amounts of unstructured data 
resulting in a fast automated feature extraction ability (LeCun et al., 
2015; Young et al., 2018; Parico and Ahamed, 2021). According to the 
current research trend in weed detection, an approach in DL, called 

transfer learning (TL) is widely adopted to train pre-trained CNN models 
on custom dataset (Fig. 4) (Subeesh et al. 2022; Chen et al. 2021). TL 
aims at transferring the knowledge from the source domain to the target 
application by improving its learning performance (Zhuang et al., 2021). 
In real life this can be understood as someone who knows how to ride a 
bicycle can simply learn to ride a motorbike since the domain is similar, 
riding. In a similar fashion, a CNN model, AlexNet, was trained on 
ImageNet dataset (Krizhevsky et al., 2012) can now be generalized 
through TL in the agricultural domain to recognize weeds from crop 
plants (Yan et al., 2020). The basic structure of a CNN model consists of 
three vital layers, convolutional layer, pooling layer, and a fully con-
nected layer. The convolutional layer is used to extract features (using 
filter operations) on the given input image (Fig. 4a). These features can 
be edges or corners that results in creating a final feature map which is 
fed as an input to the next pooling layer. Pooling layer performs 
downsampling by decreasing the dimension of the feature map so as to 
ease computational costs. Finally, the downsampled image is fed to a 
fully connected neural network layer (FCNN) (Fig. 4b) that consists an 
activation function used to recognize the final test image (Fig. 4c). 
Nowadays, the task of classifying weeds from crop plants is mostly based 
on the TL approach as it relaxes the need for large-scale image data 
collection, reduces model training hours, and eliminates the need to 
develop a new NN model (Tan et al., 2018). 

In the agricultural domain, CNN is a widely adopted network used 
for training and identifying weeds amongst crop plants (Kamilaris and 
Prenafeta-Boldú, 2018). After the huge success of ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2015), 
different models within CNN, like, Residual Neural Network (He et al., 
2015), Visual Geometry Group (VGG) (Simonyan and Zisserman, 2014), 
and You Look Only Once (YOLO) (Redmon et al., 2015) were designed to 
leverage image recognition or classification tasks. These models paved a 
way in less time for weed detection. The first reported literature 
addressed the use of CNN models by using VGG-16 to perform pixel-wise 
weeds to crop plants classification (Dyrmann et al., 2016a; Dyrmann 
et al., 2016b) (Fig. 5a). This literature study also explored the applica-
bility of models in classifying weeds that were occluded by maize plants 
with over 94.4 % classification accuracy. Recently, Chen et al., (2021) 
performed a very thorough evaluation of 27 state-of-the-art CNN ar-
chitectures to classify 15 different species of weeds in cotton production. 
The results show that ResNet-101 achieved the highest F1-score of 99.1 
% in classifying weed species. In a similar fashion, a comparison 
benchmark of multiple CNN models, GoogleNet, VGGNet and DetectNet, 
was explored that identified weeds in turfgrass (Espejo-Garcia et al., 
2020). The challenge of identifying multiple weed species in a single 
image has been addressed in the work by Ahmad et al. (2021). The 
authors have assessed the performance of 3 image classification model 
(VGG-16, ResNet-50, Inception-V3), and one object detection model 
(YOLOv3) to classify and locate the presence of weeds in soybean pro-
duction (Fig. 5b). Results show that VGG-16 achieved 99.1 % accuracy 
in classifying weeds whereas YOLOv3 scored a mAP value of 54.3 % in 
classifying multiple weeds in single image. 

The fusion of different CNN models has also resulted in significant 
success to classify weeds from crop plants. For example, five multiple 
CNN models were fused extract the best features for weed classification 
tasks (Hoang Trong et al., 2020). Their method estimated the priority 
scoring by calculating the Bayesian conditional probability and score 
vector based on each model’ contribution when classifying weed spe-
cies. The study was accomplished by concluding that fusing too many 
models might render the classification tasks redundant. Similarly, 
feature combination using two CNN architectures, i.e., batch normali-
zation from AlexNet and depth filters from VGGNet, resulted in a hybrid 
network, called AgroAVNET (Chavan and Nandedkar, 2018). Results 
show that AgroAVNET achieved an accuracy of 98.2 % in identifying 12 
weed species. The combination of conventional ML and DL techniques is 
also a very promising approach in classifying weeds from crop plants. 
For instance, Espejo-Garcia et al., (2020) extracted the best features 
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Table 2 
In-depth summary of technology and DL models used for weed detection in the last decade.  

S. 
No. 

Reference Dataset/Technology Weed species DL model Accuracy 

Weed detection on still image context 
1 Dyrmann et al., 

(2016a) 
Mobile phones 22 different crop plants and weed 

species 
CNN-based model 86.20 % 

2 Tang et al., (2017) Canon EOS 70D Cephalanoplos, digitaria, bindweed k-means pre-training with 
CNN network 

92.89 % 

3 Chavan and 
Nandedkar, 
(2018) 

Plant seedling dataset Fat hen, chickweed, cleavers, charlock, 
blackgrass, loose-silky bent, scentless 
mayweed, cranesbill, shepherd’s purse  

AgroAVNET – a hybrid of 
AlexNet and VGGNet  

98.23 ± 0.51 

4 Farooq et al., 
(2018) 

JAI BM-141GE Not mentioned (patch-based weed 
mapping) 

MatConvNet — 

5 Teimouri et al., 
(2018) 

Based on Public dataset Field pansy, common chickweed, 
blackgrass, hemp-nettle, scentless 
mayweed, cereal, brassicaceae, maise, 
cranesbill, etc. 

InceptionV3 Average accuracy obtained was 70 
% 

6 Adhikari et al., 
(2019) 

Handheld camera (specific name 
not mentioned) 

Wild millet ESNet, Faster R-CNN, 
EDNet, DeepLabV3 

Precision and F1-score of 84.56 % 
and 82.16 %, respectively 

7 Bosilj et al., (2019) Based on public dataset Specific name not mentioned SegNet-Basic Multiple accuracies obtained based 
on the variability of the dataset 
used 

8 Binguitcha-Fare 
and Sharma, 
(2019) 

Dataset from Aarhus University 
Signal Processing group 

Scentless Mayweed, common 
chickweed, shepherd’s purse, cleavers, 
redshank, fat hen, etc. 

ResNet101 98.4 % on validation and 96 % on 
testing dataset 

9 Farooq et al., 
(2019) 

XIMEA Lawn weeds (specific name not 
mentioned) 

MatConvNet 95.7 % 

10 Jiang, (2019) Not mentioned (Public Dataset) 12 species from Plant Seedlings Dataset VGG16 91 % on verification dataset 
11 Yu et al., (2019a) SONY Cyber-Shot Digital Camera Dandelion, ground ivy, spotted spurge VGGNet, GoogleNet, 

AlexNet, DetectNet 
F1-scores of VGGNet and DetectNet 
was 92.7 % and 98.4 % 

12 Yu et al., (2019b) SONY Cyber-Shot Digital Camera Dollar tree, old world diamond-flower, 
florida pusley 

VGGNet, GoogLeNet, 
DetectNet 

DetectNet performed best with an 
accuracy > 99 % 

13 Asad and Bais, 
(2020) 

Nikon D610 Specific name not mentioned U-Net, SegNet SegNet based on ResNet-50 with 
99.4 % 

14 Arun et al., (2020) Crop/Weed Field Image Dataset 
(CWFID) 

Specific names as mentioned within the 
dataset 

Reduced U-Net Testing accuracy of 95.3 % 

15 Espejo-Garcia 
et al., (2020) 

Nikon D700 Digital Camera Black nightshade, velvetleaf Xception, Inception-ResNet, 
VGNets, Mobilenet, 
DenseNet 

DenseNet combined with support 
vector machine (SVM) achieved an 
F1-score of 99.3 % 

16 Jiang et al., (2020) Canon PowerShot SX600 Bluegrass, sedge, etc. Graph Convolutional 
Network (GCN) 

GCN-ResNet-101 achieved 97.8 %, 
99.3 %, 98.9 % and 96.5 % 
accuracy on four different weed 
datasets 

17 Khan et al. (2020) Rice seeding and weed dataset, 
BoniRob dataset, carrot crop vs. 
weed dataset, and a paddy–millet 
dataset 

Weeds as mentioned in these datasets Cascaded encoder-decoder 
network (CED-Net) 

F1-score of 83.08 % 

18 Hoang Trong 
et al., (2020) 

Not mentioned 12 species from Plant Seedling dataset 
and 21 species from CNU weeds dataset 

VGG, Mobilenet, Inception- 
Resnet, Resnet, NASNet 

Multiple accuracies obtained based 
on the models and dataset 
combinations 

19 Gao et al., (2020a) Nikon D7200 Hedge bindweed YOLOv3-tiny mAP of 76.10 % 
20 Peteinatos et al., 

(2020) 
Sony Alpha 7R Mark 4 9 weed species VGG16, ResNet50, Xception Average F1-scores of VGG-16, 

ResNet-50, and Xception were 
82.00 %, 97.00 %, and 98.00 %, 
respectively 

21 Hu et al., (2020) DeepWeeds public dataset 8 weed species Graph Weeds Net (GWN) Top-1 accuracy of 98.10 % 
22 You et al., (2020) Bonn and Stuttgart datasets Soil dicot weed and grass weed Customized DNN sematic 

segmentation model 
Model achieves mean pixel 
accuracy (mPA) of 93.44 % 

23 Ahmad et al., 
(2021) 

Sony WX350, Panasonic DMC- 
ZS50 

Cocklebur, redroot pigweed, giant 
ragweed, foxtail 

VGG16, ResNet50, 
InceptionV3, YOLOv3 

VGG-16 with an accuracy of 98.90 
% and YOLOv3 with a mAP of 
54.30 % 

24 Chen et al., (2021) Mobile phones and handheld 
cameras 

Over 15 weed species (Waterhemp, 
Nutsedge, Eclipta, Carpetweed, etc.) 

27 DL models that includes, 
ResNets, VGGs, Inceptions, 
MobileNets, etc.) 

ResNeXt101 achieved the best F1- 
score of 98.93 ± 0.34 % 

25 Hussain et al., 
(2021) 

Canon camera Lamb’s quarter GoogleNet, VGG-16, 
EfficientNet 

EfficientNet with PyTorch 
framework showed an accuracy 
between 92 % − 97 % 

26 Fawakherji et al. 
(2021) 

BOSCH Bonirob Publicly available dataset: Sugar beet, 
Sunflower, and 

Bonnet, U-Net, and UNet- 
ResNet 

UNet-ResNet with 97 % precision 
accuracy 

27 Jin et al., (2021) Digital camera Brassica rapaspp. chinensis CenterNet Precision and F1-score of 95.60 % 
and 95.30 %, respectively 

28 Junior and Ulson 
(2021) 

No specific device mentioned Azevém, Buva, Capim-Amargoso, 
Capim-Pé-deGalinha, and Caruru 
Palmeri 

YOLOv5s, YOLOv5m, 
YOLOv5l, and YOLOv5x 

YOLOv5x achieved mean accuracy 
of 77 % 

29 Xu et al. (2021a) Intel RealSense RGB-D Grass weeds and broadleaf weeds Customized CNN based on 
Faster R-CNN and VGG16 

Model achieved an overall 
precision score of 89.3 % 

(continued on next page) 
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Table 2 (continued ) 

S. 
No. 

Reference Dataset/Technology Weed species DL model Accuracy 

30 Espejo-Garcia 
et al. (2021) 

Early crop weed dataset Black nightshade, tomato DenseNet, Xception, Xception network achieved 99 % 
accuracy on test set and 93.2 % on 
noisy dataset 

31 Xu et al., (2021b) Publicly available dataset Black-grass, Charlock, and Cleavers TX-XGBoost Test accuracy of 99.6 % 
Real-time weed detection 

32 Jeon et al., (2011) Machine vision system installed 
with a Canon SD110 Camera 

Cocklebur, common lambsquarters, 
morning glory, velvetleaf 

ANN (Artificial Neural 
Network) 

Identification rate of corn plants 
(remaining weeds) were 72.6 % 

33 Lottes et al., 
(2018) 

Bonirob robotic platform Specific name not mentioned Fully Convolutional 
Network (FCN) 

81.5 % precision accuracy on weed 
dataset 

34 Milioto et al., 
(2018) 

Bonirob robotic platform Specific name not mentioned Mask RCNN Multiple accuracies achieved based 
on the type of dataset used 

35 Kounalakis et al., 
(2019) 

Monochrome camera (PointGrey 
GS3-U3-23S6M-C) 

Broad-leaved dock AlexNet, VGG-F, VGG-VD- 
16, Inception-V1, ResNet50, 
ResNet101 

ResNet-50 with 96.1 % ± 0.1 

36 Olsen et al., (2019) AutoWeed 8 weed species InceptionV3, ResNet50 Inception-v3 and ResNet-50 
achieved classification accuracy of 
95.1 % and 95.7 %, respectively 

37 Partel et al., 
(2019) 

Smart sprayer with Logitech 
Webcam installed 

Portulaca weeds YOLOv3-tiny, YOLOv3 YOLOv3 achieved 78 % accuracy 
for target spraying application 

38 Champ et al. 
(2020) 

Autonomous electrifier robot Brassica nigra (L.) W. D. J. Koch, 
Matricaria chamomilla L., Lolium 
perenne L., Chenopodium album L., and 
natural weeds 

MaskR-CNN Multiple accuracies achieved as per 
weed classes 

39 Hussain et al., 
(2020) 

Smart variable rate sprayer (SVRS) Lambsquarters YOLOv3-tiny, YOLOv3 mAP score of YOLOv3 (93.2 0 %) 
was better than YOLOv3-tiny 
(78.20 %) 

40 Rakhmatulin and 
Andreasen, (2020) 

Laser-based weeding prototype Cough grass SqueezeNet coupled with 
Viola-Jones Algorithm 

Up to 88 % detection accuracy 

41 Ruigrok et al. 
(2020) 

Robotic precision spraying system Volunteer potato, sugar beets YOLOv3 Precision score of 84.3 % 

42 Liu et al., (2021) Variable rate sprayer Spotted spurge, shepherd’s purse AlexNet, VGG16, GoogleNet VGG-16 achieved precision and F1- 
scores of 96 % and 94 %, 
respectively 

Weed detection involving UASs and DL models 
43 dos Santos 

Ferreira et al., 
(2017) 

DJI Phantom 3 Pro Broadleaf and grassweeds ConvNets Achieved > 98 % mean accuracy 

44 Bullock et al., 
(2019) 

Sony A600 mounted on a UAV Foxtail, Yellow nutsedge Edge-Stretch Context (ES- 
Context) 

Accuracy and precision scores of 
95.7 % and 75.5 %, respectively 

45 Chechliński et al., 
(2019) 

Weeding machine with a 
Raspberry Pi 3B + for vision-based 
tasks 

Specific name not mentioned Custom CNN model 
combining DenseNet, 
ResNet, U-Net, MobileNets 

Models achieve satisfactory 
accuracy between 47 % − 67 % 

46 Beeharry and 
Bassoo, (2020) 

UAV (Specific name not 
mentioned) 

Broadleaf ANN, AlexNet AlexNet achieves an accuracy of 
99.80 % on the test dataset 

47 Sivakumar et al., 
(2020) 

DJI Matrice 600 with Zenmuse 
X5R 

Waterhemp, Palmer Amaranthus, 
common lambsquarters, velvetleaf, 
foxtail 

SSD, Faster RCNN Precision and F1-score of Faster 
RCNN and SSD were, 65 % and 66 
%, and 66 % and 67 %, respectively 

48 Huang et al., 
(2020) 

UAV Scop, Barnyard grass AlexNet, VGGNet, 
GoogLeNet, ResNet 

VGGNet achieved the best accuracy 
of 77.20 % 

49 Zhang et al., 
(2018) 

DJI Phantom 3 5 types of weeds YOLOv3-tiny, YOLOv3 Accuracy of YOLOv3 was 87.00 % 
as compared to YOLOv3-tiny (78 
%) 

50 Zou et al., (2021) DJI Mavic 2 Pro Green bristlegrass, milkweed, sedge U-Net Segmenting accuracy of 93.40 % 
weeding area 

51 Khan et al., 
(2021a) 

DJI Spark Specific name not mentioned YOLOv3 Average accuracy to identify weeds 
was 95.30 % 

52 Khan et al., 
(2021b) 

DJI Spark Goosegrass Semi-supervised Generative 
Adversarial Network (GAN) 

Technique was able to achieve 90 
% accuracy 

53 Lam et al., (2021) DJI Phantom 3 and 4 Broad-leaved dock VGG16 VGG16 was able to achieve an 
accuracy and F1-score of 92.10 % 
and 78.70 %, respectively 

54 Etienne et al., 
(2021) 

DJI Matrice 600 Pro Redroot pigweed, giant ragweed, 
velvetleaf, giant foxtail, etc. 

YOLOv3 Average precision for monocot and 
dicot weeds were 91.4  % and 86.1 
%, respectively 

55 Milioto et al., 
(2017) 

JAI Camera Specific name not mentioned CNN architecture with blob- 
wise classification 

Multiple accuracies obtained based 
on the hardware platform and 
dataset used 

56 Sa et al., (2018a) DJI Mavic Specific name not mentioned SegNet Model achieves an acceptable F1- 
score of 81 % 

57 Sa et al., (2018b) DJI Inspire 2 and Mavic Amaranthus retroflexus, Galinsoga spec., 
Polygonum spec, etc. 

Customized SegNet Customized SegNet achieves an 
accuracy of 78.20 % 

58 Osorio et al., 
(2020) 

DJI Mavic Pro Specific name not mentioned YOLOv3 and Mask R-CNN Weed detection accuracy achieved 
by both the models were 94 % 

59 Ukaegbu et al., 
(2021) 

DJI Phantom 3 Grassweed ResNet-50 Validation accuracy was 98.40 % 

(continued on next page) 
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using multiple CNN models that were then fed to ML classifiers for 
training and testing purposes. Another work by Tang et al., (2017) 
combined an unsupervised K-means feature learning algorithm with a 
CNN model to classify weeds from soybean seedlings. 

Based on the literature study, it is clear that CNNs are the most 
applied technique in the agricultural domain for weed detection. Most of 
the research studies have used self-built or publicly available dataset to 
train a pre-trained model using TL. However, based on the ongoing 
research trend on weed detection, researchers are working towards 
improving accuracies for weed species with limited number of training 
images (class imbalance). For example, increase in the classification 
accuracy of Spurred Anoda weed was reported (from 48 % to 90 %) by 
adopting weighted cross entropy loss function approach during the 
model training process (Chen et al., 2021). Similarly, Nasiri et al. (2022) 

combined the dice and focal losses as a custom linear loss function to 
tackle imbalanced dataset challenge. In most of the research work, DL 
model benchmarking and comparison is found to be a common pattern 
to decide the best neural network for weed detection. However, based on 
the technical publications, no one specific DL model cannot be used to 
identify weeds in multiple environments or a completely unseen loca-
tion. For instance, in some study, AlexNet may have classified weeds 
with high accuracy while in some VGG-16 outperformed AlexNet. 
Therefore, it is hard to decide and stick to one DL model that would 
perform best with high accuracy in almost any field conditions. Future 
research direction should focus on improving the feature extraction 
capability of pre-trained models (Peng et al., 2022) or model custom-
ization technique (Razfar et al. 2022). Since, DL technique has an 
automated feature extraction ability, this step needs tremendous 

Table 2 (continued ) 

S. 
No. 

Reference Dataset/Technology Weed species DL model Accuracy 

60 Khan et al., 
(2021c) 

Quadcopter coupled with a 
Raspberry Pi 4 

Specific name not mentioned 5 custom CNN models Average score of 95.50 % was 
achieved in classifying weeds  

Fig. 3. Sensors available for weed image acquisition.  

Fig. 4. Basic structure of a CNN-based model.  
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advancements to adjust for extracting complex weed image represen-
tations. Generally, pretrained models are trained on simple images 
(objects around us), but when the same models are trained on weed 
image dataset, they may either fail to extract relevant morphological 
features of complex weed species or end up extracting redundant fea-
tures that may lead to overfitting. Therefore, research based on 
extracting relevant features for weed detection will have a high scope in 
the future. Although these studies may have identified weeds with high 
accuracies, most of them have been limited to a constrained number of 
test images in the same field settings. Therefore, this limits the judgment 
on the scalability of trained models when deployed to identify weeds in 
real-time or on a completely different distribution of test images. To 
address this, experts from multiple universities should collaborate in 
order to develop a high-quality and a robust DL model. For example, 
researchers from one university can train the model based on the dataset 
collected on their experimental field. At the same time, the same 
developed model should be deployed based on the test dataset provided 
by some other expert from a different university. This research practice 
will lead to new and novel research findings based on the performance of 
DL models applied to a completely unseen and new locations. 

3.2.1.1.2. Hyperspectral images. With all the advancements made in 
sensor technology, hyperspectral sensors (HS) are also looked upon as a 
possible solution for weed classification because of their high spectral 
data channels (Li et al., 2021). Although these types of sensors offer 
image information in narrow bands, the application of DL techniques 
demands intense labeling procedure and optimization on a large number 
of parameters to improve mode performance on the test dataset. Addi-
tionally, training high-dimensional large-sized data will demand heavy 
computational adequacy (Bioucas-Dias et al., 2013). But, according to 
the present research scenario, advances made in specifically designed 
GPU hardware are enabling the application of DL for hyperspectral 
images (Zhou and Prasad, 2020; Li et al., 2020). Numerous studies have 
deployed ML techniques on HS images to classify weeds from crop plants 
(Scherrer et al. 2019; Pantazi et al., 2017; Li et al. 2021). However, 
training HS data using DL techniques with the possibility of extracting 
spatial and spectral features together holds great benefit. As in the case 
of 3D CNN that has proved to increase accuracy in comparison to 

conventional ML methods (Yin et al., 2021). Researchers have found 
that using 3D CNN also eliminates the need for dimensionality reduction 
for the input training images (Li et al., 2017). Studies have shown that 
weed classification accuracy can be increased when diverse features 
were extracted from multiple bands by deploying CNN-based techniques 
on HS images (Farooq et al., 2018; Farooq et al., 2019). In short, the 
application of DL techniques to classify weeds from crop plants is 
emerging in the HS domain as well (Scherrer et al., 2019; Eddy et al., 
2014) (Fig. 5 c & d). However, certain challenges such as the presence of 
noise in an image (adversarial image), non-uniform lighting conditions, 
and blurredness can easily fool a trained network to classify a class 
correctly (Serre, 2019). Careful attention needs to be given to the pre-
processing steps as a single preprocessing pipeline cannot be applied to 
multiple dataset. These steps should be independent to the type of DL 
approach adopted to classify weeds in HS images. 

The present research in developing DL algorithms for HS-based im-
ages are constrained by two limitations. These limitations can be 
observed in the area of open-source resources, such as, public domain 
weed dataset and custom application programming interfaces (APIs). 
Although DL techniques can be deployed on HS images, training high- 
dimensional image data will demand computational time as well as 
programming expertise. Additionally, special attention needs to be 
navigated to make feature selection and representation tasks more user 
friendly. This will help researchers understand the complex pattern 
learned by the model when deployed on HS images. 

3.2.2. Unmanned weeding robots (UWRs) for real-time weed detection 
In-field weeding operation demands two crucial steps, (1) identifying 

weeds amongst crop plants (Dekker, 1997) with high accuracy, and, (2) 
accurately localizing weeds for weeding operation (Sermanet et al., 
2014). Many commercially available UWRs have emerged over the last 
decade to classify weeds from crop plants in real-time. These include, (a) 
weeding robot prototype (van Evert et al., 2011) (Fig. 6a), (b) Weedcer 
(Berge et al., 2012) (Fig. 6b), (c) BoniRob (Bangert et al., 2013) (Fig. 6c), 
(d) Dino (Naїo Technology, France) (Naїo Technologies) (Fig. 6d), (e) 
RIPPA (Robot for Intelligent Perception and Precision Application) 
(Bogue, 2016) (Fig. 6e), (f) Hortibot (Hortibot: the autonomous, GPS- 

Fig. 5. Classified weeds as seen in RGB color space (a, b) and hyperspectral images (c, d).  
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enabled weed eradicator) (Fig. 6f), (g) Avo (EcoRobotix Avo) (Fig. 6g), 
(h) WeLASER (WeLASER) (Fig. 6h), and (i) Robotti (Agrointelli) (Fig. 6i 
& 7a). 

On the other hand, conventional sprayers like See and Spray (John 
Deere), Patriot series (Case IH), and Weed-IT have also gained market 
interest for in-field spraying operations. However, the in-field applica-
tion spanning over multiple crop plants is limited with these conven-
tional sprayers. For instance, John Deere’s See and Spray can only 
identify weeds in corn, soybean, and cotton fields (Fig. 7c). Additionally, 
this system would work better in identifying weeds in fallow land 
limiting its application to classify weeds in the presence of densely 
vegetated crop plants. Whereas Carbon Robotic’ ground robot has been 
tested to identify weeds in onion crop, chard, baby spinach, lettuce, 
cilantro, and carrot plants amongst others. Similarly, Dino (Naїo Tech-
nologies) can also be used to identify weeds in several vegetable crops 
such as, cabbage, cauliflower, carrots, onions, and lettuce (Fig. 7b). 

Although UWRs have wide variety of application in multiple fields, there 
are no published benchmarks or description of specific DL models that 
would help evaluate the performance of these technologies in real-time 
(Misse et al., 2020). A further advancement on the application of DL on 
these systems is driven by research that uses resource-constrained edge 
computers for on-the-go processing and decision making. Currently, 
many industries and university-based research are inclined towards the 
use of small palm-sized edge GPUs that demands less power and low 
latency to handle real-time weed detection. 

3.2.2.1. DL on resource-constrained edge platform for on-the-go site-spe-
cific weeding operation. High-throughput edge computers integrated 
with a vision-based system for autonomous navigation (Mousazadeh, 
2013; Roshanianfard et al., 2020) and real-time weed detection (Lee 
et al., 2021) are emerging. DL on resource-constrained edge computers 
is widely adopted due to less space requirements, low power 

Fig. 6. Commercial robots that use computer vision techniques to perform in-field weeding tasks.  

Fig. 7. Weed detection accomplished by in-field weeding robots.  
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consumption, and less latency during data transfer and processing. But 
one of the major challenges of implementing DL on edge computers 
sprawls in its requirement of training weed and crop plants each time. 
Since weed management in agriculture is accomplished on open farms 
with dynamic environment, on-board computers need to be trained with 
images of new weed species. This manual training or customization 
might slow down the adoption rate of these technologies by farmers 
(Serre, 2019), thereby affecting its scalability on multiple field condi-
tions. Also, weeds need to be destroyed at a specific growth stage; 
therefore, a very robust perception system is required to build a DL 
model that is able to destroy weeds at an appropriate stage. Along the 
same line of thoughts, to build a very robust DL model, large amount of 
data is required at the training stage to identify weeds in an extreme 
dynamic condition. The data fed to the network needs to be carefully 
annotated under the expertise of a weed scientist to ensure correct weed 
labelling procedure is accomplished. Although an expert might be able 
to differentiate between look-alike crop plants and weeds at an early 
growth stage, a key limitation of DL algorithms might be observed in this 
area during real-time analysis. 

A surge in the application of DL for real-time weed detection was 
observed after Jeon et al., (2011) showcased an effective use of machine 
vision system for differentiating crop plants from weeds. They used 
concepts from traditional image processing such as, adaptive image 
thresholding, and artificial neural network (ANN) to detect crop plants 
in uncontrolled outdoor illuminations. Although their algorithm was 
able to identify 72.6 % of corn plants, their work sparked the use of 
training models for real-time applications. The application of neural 
network has not been limited to detecting weeds but also segmenting 
them based on pixel-level information. Semantic-based segmentation 
was performed to classify weeds from crop plants and soil background 
(Milioto et al., 2018). The trained model was deployed on test images 
acquired using Bonirob ground robot. One-stage object detection ar-
chitecture, YOLOv3, was deployed to differentiate between weeds and 
crop plants in real-time (Partel et al., 2019). The same architecture was 
inferenced on two graphical processing units (GPUs)-based systems, 
GTX 1070Ti and Nvidia Jetson TX2. Their results report that YOLOv3 
performed better (precision of 71 %) on GTX 1070Ti (in real-time con-
sisting of crop plants) which is a more powerful GPU when compared to 
a TX2 module (precision of 44 %). Similarly, a comparative test of 
YOLOv3 and YOLOv3-tiny was performed to identify common lambs-
quarters in a potato field (Hussain et al., 2020). Both the models were 
trained on 24,000 images of weeds, potatoes, and diseased plants. As 
reported in the literature, YOLOv3 had a larger mAP value (93.2 %) as 
compared to tiny YOLOv3 (78.2 %). But, the inference time of YOLOv3 
(14.6 FPS) was less than tiny YOLOv3 (30.0 FPS) when deployed in real- 
time conditions. The authors suggest to use the YOLOv3-tiny model for 
inferencing purpose. Currently, the most common approach for real- 
time weed detection is inclined towards the use of lite-weight models. 
A majority of the literatures have deployed lightweight models that 
promises to achieve high accuracy with minimum latency and optimal 
parameters. For instance, YOLOv3 model was trained to identify, locate, 
and spray weeds with 96 % accuracy in in-field scenario (Ruigrok et al. 
2020). Since, edge devices are resource-constrained, therefore, it is often 
desired that the trained DL model should have limited number of pa-
rameters that consume less GPU memory during the inferencing stage. 
Considering this as another research challenge, weed detection accuracy 
of 95.1 % was achieved by deploying 5-layer custom neural network on 
Raspberry Pi 4 (Razfar et al. 2022). As per the results, 5-layer CNN had 
414,956 parameters with a memory usage of 1.14 GB delivering 9.85 ms 
latency during inference time. Integrating novel modules within the 
backbone layer of DL models are also becoming an area of research 
study. For example, block-based attention module was combined with 
YOLOv5 model to identify the presence of Dunal weeds (Wang et al., 
2022b). The trained model was deployed on Jetson AGX Xavier and 
achieved a real-time precision accuracy of 94.6 % with a processing 
speed of 37 FPS. Hennessy et al. (2022) also deployed YOLOv3 model to 

identify hair rescue and sheep sorrel in wild blueberry field. The model 
achieved an FI-score of 97 % and 95 % in identifying hair rescue and 
sheep sorrel, respectively. Double-stage object detection models, such 
as, Faster R-CNN or Mask R-CNN is considered densely designed models 
that often end up consuming lot of GPU memory during inferencing 
stage. To address this, a comparative study of single and double-stage 
models for weed detection was studied (Saleem et al., 2022). Out of 
all the model validated on test dataset, YOLOv4 achieved the highest 
mAP of 79.6 % in identifying all the weed classes. Clearly, in the light of 
all the reported literatures, different versions of YOLO remain the best 
choice for real-time weed detection due to their small size, a smaller 
number of parameters, and optimal inference timing. 

In the future, weeding robots that promise to address weed detection 
in a real-time environment will have to be designed efficiently that not 
only consumes less power but should be quick enough to make smart 
decisions on edge devices. The task of making smart decisions on these 
edge devices will be highly dependent the quality of the dataset used and 
training techniques applied to boost the generalization ability of the 
algorithm. To increase the generalization efficiency of DL, large 
amounts of data will be required to train DL models. This is a very 
crucial step as the output model will reflect the quality of input data (Dai 
et al., 2018). The cost of data acquisition, management, storage, and 
image annotation will play a big role in developing a robust DL model 
for real-time weed detection. Although, techniques such as active 
learning can relax the need to annotate images manually (Ning et al., 
2022), data acquisition, management, and pre-processing still demands 
manual human input. Additionally, converting models to lightweight 
frameworks, such as TensorFlow Lite (TFLite) and TensorRT would be 
beneficial for real-time inferencing. These frameworks assist in reducing 
model size and redundant parameters through post training model 
quantization and pruning technique (Zhang et al., 2022). Overall, to 
develop successful large-scale weeding robots, expertise from the field of 
weed science, DL, and mechatronics engineering must work together to 
develop a powerful sensing and weeding solution. Expertise from these 
three fields will have to be coupled with farmer’ experience to enhance 
feeding intelligent decisions to UWRs. 

3.3. Remote sensing-based weed detection 

The term “remote sensing” was first coined by Evelyn Pruitt in the 
late 1950 s after which many researchers and scientists have tried to 
define the precise meaning of this term (Fussell et al., 1986). Remote 
sensing is an indirect data acquisition process followed by data manip-
ulation operation such as, pixel transformation or pixel clustering to 
convert the images into a human-readable format. Different categories 
of sensors used in this process include RGB camera mounted on a gimble 
attached with a DJI Phantom 4 Pro (Fig. 8a), 10-band multispectral 
sensor by Micasense (RedEdge MX) (Fig. 8b), and Headwall’s Nano 
Hyperspec® (Headwall) (Fig. 8c). The quintessential steps required for 
UASs image data acquisition to weed detection includes, (1) flying 
missions using iOS or Android-based apps, such as, Pix4DCapture 
(Switzerland), DJI GO 4 Pro (China), etc.; (2) stitching all the images to 
generate an orthomosaic either using a commercial software like Pix4D 
(Switzerland) or an open-source platform like WebODM (Open-
DroneMap); and finally, (3) applying DL techniques to detect weeds in 
the generated orthomosaic. 

3.3.1. Integrated application of orthomosaic imagery and DL for weed 
detection 

3.3.1.1. RGB orthomosaic. RGB-based weed detection on orthomosaic 
involves flying missions and generating a geo-registered imagery 
depicting the real location when projected on the earth’s surface (bird’s- 
eye view of a field). Currently, processing an orthomosaic for weed 
detection involves two different methodologies. These methodologies 
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are dependent on ML and DL-based approaches. When ML-based tech-
niques are implemented to classify weeds from crop plants, a common 
approach is to develop a classifier trained on a single part of the 
orthomosaic (Islam et al., 2021). This classifier is further validated on 
the remaining portion of the whole orthomosaic. However, this review 
work does not discuss ML-based weed classification. On the other hand, 
DL-based approach demands clipped (constraint due to large dimension 
of the orthomosaic imagery) and annotated images of weeds and crops 
to train a model for validation and testing purpose (Sivakumar et al., 
2020) (Fig. 9). 

Research work involving early weed identification using aerial im-
agery and DL is challenging because of indistinct images of weeds and 
crop plants. However, researchers have focused on implementing DL 
models, like, AlexNet, VGGNet, GoogleNet, and ResNet to detect weeds 
at the seedling stage (Huang et al., 2020). They also compared the ac-
curacy and inference timing of these models with object-based image 
analysis (OBIA), which is considered a widely adopted method to clas-
sify weeds from crop plants (López-Granados et al., 2016). Their results 
report that DL-based detection (using AlexNet model) achieved the 
highest accuracy in identifying weeds at the seeding stage. Image res-
olution also plays a significant role in achieving better accuracy when 
DL models are implemented on UASs acquired images. For this very 
reason, a UASs that fly close to the ground will deliver a higher reso-
lution with distinct pixel intensities of each object when compared to 
UASs flying at a higher altitude. The lower the flight height, the lower 
the ground sample distance will be, leading to more detailed image. In 

order to find out the minimum flight altitude for precise weed detection, 
research work carried out by Lam et al., (2021) investigated the minimal 
flying height (at 32 ft, 50 ft, and 65 ft) required for optimal accuracy for 
weed detection. They deployed VGG-16 model that resulted in a clas-
sification accuracy (F1-score) of 78 % at 32 ft altitude. 

Several studies state that despite early weed control methods, some 
weeds do dodge early weed management methods (called late season 
weeds) and become trouble for the subsequent growing seasons (Goplen 
et al., 2017). To detect late-season weeds using DL techniques and UASs 
imagery, Sivakumar et al., (2020) compared two object-based detection 
models, Faster R-CNN and single shot detector (SSD) with a patch-based 
CNN model. It turns out that the accuracy and inference time of object- 
based detection model (F1-scores of Faster RCNN and SSD was 0.6 and 
0.7, respectively) performed significantly better than the patch-based 
CNN model. Application of single-stage object detection model, 
YOLOv3, has also been used to localize the presence of weeds in aerial 
imagery (Khan et al., 2021a). The model achieved an accuracy of 91 % 
in detecting and localizing weeds. Furthermore, the model developed in 
this study could be integrated or embedded on a UASs sprayer system or 
a tractor. The application of lightweight tiny model, YOLOv3-tiny, was 
deployed to detect weed pixel coordinate. These coordinates were 
further converted to geodetic coordinates to precisely locate the position 
of detected weeds (Zhang et al., 2018). Similarly, Etienne et al. (2021) 
deployed YOLOv3 model on UASs imagery to detect monocot and dicot 
weeds at an altitude of 10 m (32 ft). Results prove that YOLOv3 model 
was successful in detecting and locating the monocot (91.4 %) and dicot 

Fig. 8. Drones with sensors used for weed image acquisition.  

Fig. 9. Weed detection using UASs acquired imagery.  
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seeds (86.1 %) an average precision (AP) of 25 %. Overall, it can be 
noted that YOLOv3 has been a good choice for researchers to detect and 
locate the presence of weeds (small objects) in UASs acquired imagery. 

Besides bounding-box approach, semantic segmentation, is also seen 
as the most common technique to classify weeds from crop plants in 
aerial images. This technique is mostly used to segment out the precise 
location of weeds in an image. U-Net model (U-shaped structure) was 
deployed to segment weeds from soil background (Zou et al., 2021). 
Further, they also developed an algorithm to quantify weed density 
which was also an extended application of using U-Net-based algorithm 
for weed classification. Results show that an R-square value of 0.94 was 
achieved in comparison with ground-truth data. Recently, four seg-
mentation model, SegNet, U-Net, fully-convolutional network (FCN), 
DeepLabV3+, was fine-tuned and trained to segment weeds from crop 
plants and background (Hashemi-Beni et al. 2022). Results indicate that 
DeepLabV3 + model achieved high accuracy of 90.5 % as compared to 
U-Net (86.1 %) and SegNet (64.5 %). 

3.3.1.2. Multispectral orthomosaic. Multispectral sensors are widely 
adopted in precision agriculture due to their flexibility in delivering 
object information in various spectral bands. Images captured via mul-
tispectral sensors highly depend on the environmental conditions given 
the fact that they deliver information about the plant’s reflectance 
which is affected by the light absorbed by the plant. Commercial mul-
tispectral sensors (Altum, RedEdge, etc.) are expensive but image data 
captured using these sensors have helped researchers to extract a 
normalized differentiation vegetation index (NDVI). NDVI is a quanti-
tative value that measures the greenness and vigor of vegetation (Kogan, 
1995). Since, this index can be used to extract greenness, which consists 
of mostly crop plants and weeds, research work in the past have used 
NDVI as a foundational step to first segment the soil background from 
green foreground objects. After the segmentation process, ML-based 
classifiers or DL models are leveraged to map or detect weeds, respec-
tively. For example, a common NDVI-based segmentation, analyzing 
crop row pattern, and OBIA-based image processing techniques were 
used to map out the position of weeds in UASs imagery (Peña et al., 
2013). 

Similarly, Pérez-Ortiz et al., (2015) flew a quadcopter mounted with 
a multispectral sensor to classify crop plants, soil, and weeds in a sun-
flower field using unsupervised (k-means, repeated k-means), semi- 
supervised support vector machine (SVM),and supervised learning (k- 
NN, linear SVM, and kernel SVM). They reported that the semi- 
supervised learning classification approach was best in classifying 
weeds. CNN-based pixel-wise classification approach was adopted to 
map and separate multiple classes involving weeds and crops (Sa et al., 
2018a). Their results show that this approach had an acceptable F1- 
score of 0.8 for weed detection. Later in 2018, Sa et al., (2018b) 
trained a deep neural network (DNN) model, SegNet, to perform 
semantic-based segmentation for classifying crop, soil, and weeds in the 
sugar beet field. Furthermore, they also reported that segmenting im-
ages using the NDVI index significantly helped them to boost their 
classification accuracy. Blob-wise CNN-based approach has been used to 
classify weeds from sugar beet images using RGB + NIR imagery (Mil-
ioto et al., 2017). However, Osorio et al., (2020) took a step forward to 
implement state-of-the-art technique by deploying DL model, YOLOv3 
model, to classify weeds in lettuce plantations. The authors also used 
ML-based histogram of oriented gradients SVM (HOG-SVM), and Mask 
R-CNN to test out weed classification accuracy. YOLOv3 and Mask R- 
CNN methods proved to deliver highest accuracy of 94 % when classi-
fying weeds and lettuce crop plants. 

Multispectral sensors have contributed significantly to weed detec-
tion and mapping in the precision agriculture domain. In the last couple 
of years, sensors have become compact while becoming more robust in 
their features. To add to this, as sensors have become complex in 
delivering image information, so did the DL techniques. The application 

of SegNet and U-Net models have proved to be one of those techniques 
that were widely deployed for weed segmentation tasks Apart from 
classifying weeds from soil background, these models also deliver object 
size information which can be one of the most quintessential informa-
tion to estimate weed density. 

3.3.2. Emerging spray drones and research in aerial-based weed detection 
for spot spraying application 

SSWM, also termed as target-based (Liu et al., 2021), spot spraying 
(Yu et al., 2019a), or patch spraying (Berge et al., 2012) have inspired 
engineers over the decade to develop aerial robots that can accomplish 
the task of spot spraying weeds with desired efficacy. In fact, spot 
spraying treatments can reduce the amount of herbicide used thereby 
reducing herbicide concentration in runoff (Melland et al., 2016). 

Because of the spatial heterogeneity of weeds, specific challenge 
pertaining to herbicide application arises. This challenge is related to the 
broadcast application (or blanket application) over the entire field 
resulting in environmental pollution leading to economic losses due to 
plant death. To solve this problem, a ground-robot is sent to the field for 
target spraying application. However, a ground robot may not be a 
fitting choice to scan for weed patches over a vast field since the process 
can be time-consuming. In that case, UASs equipped with sensors can 
perform spot spraying. Also, UASs-based spot spraying delivers 
preferred advantages over the ground-based robot, like, non-destructive 
to crop plants, no soil-compaction, no-fuel consumption thereby more 
environment friendly, economically sustainable, etc. 

UASs-based spot spraying only involves postemergence for control-
ling weeds. As discussed before, UASs require on-site image data 
acquisition therefore preemergence UASs applications to control weeds 
will not be applicable for weed monitoring. After the postemergence of 
weeds in the field, two distinct methods can be applied for weed 
monitoring via UASs. Firstly, creating prescription maps as discussed in 
sections 3.3.1.1 & 3.3.1.2., and secondly, sensor-based real-time. One of 
the major limitations when prescription-based mapping approach is 
adopted is related to the timeline from data acquisition to final map 
generation. The total process needs to be accomplished rapidly so that 
the weeds dynamic does not change. Delaying this step will render the 
generated map obsolete (Lima and Mendes, 2020). Therefore, these 
days, a lot of research work are inclined towards real-time weed 
detection. 

Drone-based spraying technology has recently gained popularity and 
has been commercialized by various industries. For example, DJI Agras 
T30 (DJI Agras T30) (Fig. 10a), which is a semi-autonomous spraying 
technology, requires a prerequisite flight of DJI Phantom 4 Pro drones to 
scout for weeds. After visually observing the presence of weeds, a user or 
a farmer can fly the Agras T30 drone for spot spraying application. A 
more advanced system by Precision AI (Precision AI) (Fig. 10b) uses 
computer vision to spray herbicide in row crops. Further, it can spray 
just the weeds based on a smart decision system built on AI. Another 
autonomous drone sprayer by John Deere (John Deere) (Fig. 10c) first 
uses a scout drone to scan for weeds from the air. After returning to its 
initial take-off position, it shares the weed information with the other 
drones in its swarm to spot and spray individual weeds. In the coming 
future, industrial or commercially manufactured drones for spot spray-
ing weeds will rely heavily on DL-based techniques. 

Besides industrial efforts to manufacture drones for spot spraying 
weeds, research efforts in the universities are also making significant 
effort to develop aerial-based weed detection solutions for precision 
spraying. For instance, an attention module was combined with 
YOLOv5, called YOLO-CBAM, was trained and deployed to detect the 
presence of Dunal seedlings in aerial images captured using DJI Mavic 
(Wang et al., 2022b). Similarly, a real-time weed recognition system was 
designed by integrating a Raspberry Pi 4 with a UASs (Khan et al., 
2021c). Five custom designed CNNs were trained achieving an accuracy 
of 95.5 % for real-rime weed detection. Raspberry Pi 3 module was also 
mounted on a quadcopter for real-time identification of broadleaf and 
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grass weeds in farmland (Ukaegbu et al., 2021). Several tests were 
conducted by deploying a CNN model on the soybean dataset. Training 
and validation accuracies turned out to be 99.9 % and 98.4 %, respec-
tively. Since UASs have payload constraints, therefore, significant 
research efforts should be directed in designing a network requires less 
power and parameters when inferencing. For example, a state-of-the-art 
flying robot was designed that used AGX Xavier NCS2 and Intel’s Neural 
Compute Stick to perform onboard real-time computation (Hossain and 
Lee, 2019). Concepts could be borrowed to leverage the same technol-
ogy in weed identification for real-time spot spraying applications. The 
integration of edge AI on UASs, called Ag-YOLO, demonstrated the 
effective application of target-based detection and spot spraying in palm 
plantation (Qin et al., 2021). Their research work tackled three existing 
problems for a drone-based spot spraying, choosing an appropriate 
hardware accelerator, scripting an efficient neural network algorithm, 
and model pruning to eliminate unnecessary computation. 

More research effort is also needed in the area of the aerial spraying 
mechanism. For example, sprayer tip location with regards to the target 
weeds, ensuring if the herbicide is precisely sprayed over the weeds, 
controlling spray drifts by analyzing the downwash effect of the rotors 
on spraying mechanism. But before this research effort is worked upon, 
questions pertaining to DL algorithm implementation should be pre-
cisely answered. This research may involve queries such as; the effect of 
changing gimble angle on the detection accuracy of the DL model, 
optimal altitude and speed of UASs when targeting weeds in real-time 
scenario (Rai et al. 2022), and optimizing DL models for detecting 
small objects within the input frame (Wang et al. 2022a). Advanced 
research based on these questions will help develop an effective high 
level of the crop to weed differentiating algorithm for aerial-based weed 
detection. 

4. Future directions on applying novel techniques for weed 
detection using DL 

Progress made in the area of DL to facilitate SSWM has been evident 
in the last demi-decade. Considering the ongoing research, significant 
efforts should be directed to overcome certain challenges of DL for weed 
detection. These challenges mostly lie in the area of tuning models by 
training on a limited and diverse dataset to testing them on a completely 
unseen dataset with a different distribution. To accomplish this, there 
are five effective ways that researchers in this field may consider making 
advancements. These novel techniques or approaches may include:  

a. Training a neural network from scratch – This basically means 
designing and training a novel CNN model from scratch. As 
mentioned, a majority of weed detection approaches have relied 
heavily on deploying an already pretrained CNN model. This has 
become one of the most common approaches in the agricultural 
community. Although these models have achieved an acceptable 
accuracy either on still image context or real-time scenario, the base 
layers of the pre-trained models carry weight information that may 
result in bias on the new and complex dataset. To tackle this 

challenge, more research should focus on designing neural networks 
based on focused learning of representations from complex training 
dataset. Executing this step will also demand feeding significant 
number of images to the network for robust learning mechanism. 
However, training models on diverse dataset will demand hefty 
hours for data collection, preprocessing, and annotation process. In 
some cases, training may also take weeks, provided the computa-
tional resources are high-end. Therefore, to relax this demand, few 
more approaches are described below that could be pursued to 
improve the generalization ability of the trained models for weed 
detection.  

b. Adopting domain adaptation (DA) approach (Dev et al. 2022) – DA 
technique is a special type of TL technique that assists a model to 
generalize better on the dataset that has a different distribution than 
the training dataset (test images with novel context). For example, a 
weed image dataset that has been captured using a hand-held camera 
will have a very different distribution compared to the dataset that 
has been acquired using a UASs. Therefore, the DA technique can be 
used in this case by adjusting and optimizing the trained model on 
the new test dataset with a completely different distribution.  

c. Training using adversarial approach (Bai et al. 2021) - One of the 
biggest challenges faced by DL algorithms is regarding adversarial 
images. These adversarial within an image can be present in the form 
of noise, or even a small pixel level perturbation can fool a DL model 
into classifying an object inaccurately. Recently, researchers have 
been working on an adversarial training technique called generative 
adversarial network (GAN) that promises to solve this challenge 
(Espejo-García et al., 2021).  

d. Model and module level ensemble approach (Ganaie et al., 2022) – 
The ensemble approach is a technique that uses prediction results 
from the base of multiple models to predict an outcome for an unseen 
dataset (Ofori et al. 2022). Whereas, module reparameterization (a 
more advanced approach) splits the convolutional blocks during 
inferencing operation (Wang et al., 2022a).  

e. Integrating attention module for DL (Zhu et al. 2021) – Nowadays, 
the attention mechanism approach has become popular in the DL 
community. The attention mechanism technique tends to enable the 
decoder that utilizes the best and long range of feature information 
from the given input sequences. For example, in a recently published 
work by Wang et al. (2022b), the integration of attention module 
with the YOLOv5 model has resulted in significant increase in 
detection accuracy of Dunal seedlings. 

Furthermore, exploring model interpretability-based research 
studies are lagging in the agricultural domain (Li et al. 2021). A very 
common notion surrounding DL implementation is restricted by the fact 
that DL is nothing but a black box-based technique. To address this 
notion, researchers working on detecting or classifying weeds from crop 
plants either in an industrial setting or lab boundaries must develop 
techniques that will help find a pattern learned or recognized by a 
trained CNN model. This should also be a major focus of published 
technical papers in well-known journals as well. Doing this will build a 

Fig. 10. Spray drones for spot spraying application.  
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deeper understanding on DL model feature learning technique or tuning 
models to learn focused features when classifying weeds from crop 
plants (Lee et al., 2017). 

5. Conclusion 

In this review study, 60 technical papers on weed detection using DL 
techniques have been surveyed. To accomplish this, three best-known 
academic databases were chosen, Agricola, Science Direct, and Web of 
Science. Moreover, to select relevant papers out of retrieved papers, 
abstract of each paper were read and a screening criterion were applied. 
After a successful literature search method, it is clear that a greater 
number of technical articles on weed detection using DL are published 
after 2017. 

Furthermore, to distill the information gained after reading these 
papers, the outline of this review is divided into two categories, prox-
imal and remote sensing-based weed detection. These two categories are 
further sub-divided and elaborated based on these sub-topics; sensors 
available for each sensing category and the DL techniques applied to 
process images acquired via these sensors. For example, Proximal-based 
weed detection consists of two sections, image acquisition sensors and 
DL techniques applied to process the images for weed detection. Simi-
larly, remote sensing-based weed detection also consist of two sections, 
remote sensing image acquisition technologies and DL techniques 
deployed to detect and map weeds in the generated orthomosaic. 

In conclusion, novel techniques in DL are still emerging and revo-
lutionizing weed detection for SSWM. Key findings, contributions, and 
research gaps based on this review can be summarized as follows; a) 
transfer learning approach is a widely adopted technique to address 
weed detection in majority of research work, b) less focus navigated 
towards custom designed neural networks for weed detection task, c) 
based on the pretrained models deployed on test dataset, no one specific 
model can be attributed to have achieved high accuracy on multiple 
field images pertaining to several research studies, d) inferencing DL 
models on resource-constrained edge devices with limited number of 
dataset is lagging, e) different versions of YOLO (mostly v3) is a widely 
adopted model for detecting weeds in real-time scenario, f) SegNet and 
U-Net models have been deployed to accomplish semantic segmentation 
task in multispectral aerial imagery, g) less number of open-source weed 
image dataset acquired using drones, h) lack of research in exploring 
optimization and generalization techniques for weed identification in 
aerial images, i) research in exploring ways to design models that 
consume less training hours, low-power consumption and less parame-
ters during training or inferencing, and j) slow-moving advances in 
optimizing models based on domain adaptation approach. Therefore, 
this review article will help researchers, DL experts, weed scientists, and 
technology extension specialist to develop novel ideas and work jointly 
towards advancing and improving DL-based weed detection for SSWM 
technologies. 
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